1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
"""
Posterior sampling using a PythonDistribution
=============================================
"""
# %%
# In this example we are going to show how to do Bayesian inference using the :class:`~openturns.RandomWalkMetropolisHastings` algorithm
# in a statistical model defined through a :class:`~openturns.PythonDistribution`.
#
# This method is illustrated on a simple lifetime study test-case, which involves censored data, as described hereafter.
#
# In the following, we assume that the lifetime :math:`T_i` of an industrial component follows the Weibull distribution :math:`\mathcal W(\alpha, \beta)`,
# with CDF given by :math:`F(t|\alpha,\beta)= 1 - e^{-\left( \frac{t}{\beta} \right)^\alpha}`.
#
# Our goal is to estimate the model parameters :math:`\alpha, \beta` based on
# a dataset of recorded failures :math:`(t_1, \ldots, t_n),` some of which
# correspond to actual failures, and the remaining are right-censored.
# Let :math:`(f_1, \ldots, f_n) \in \{0,1\}^n` represent the nature of each
# datum, :math:`f_i=1` if :math:`t_i` corresponds to an actual failure,
# :math:`f_i=0` if it is right-censored.
#
# Note that the likelihood of each recorded failure is given by the Weibull density:
#
# .. math::
# \mathcal L(t_i | f_i=1, \alpha, \beta) = \frac{\alpha}{\beta}\left( \frac{t_i}{\beta} \right)^{\alpha-1} e^{-\left( \frac{t_i}{\beta} \right)^\alpha}.
#
# On the other hand, the likelihood of each right-censored observation is given by:
#
# .. math::
# \mathcal L(t_i | f_i=0, \alpha, \beta) = e^{-\left( \frac{t_i}{\beta} \right)^\alpha}.
#
# Furthermore, assume that the prior information available on :math:`\alpha, \beta` is represented by independent prior laws,
# whose respective densities are denoted by :math:`\pi(\alpha)` and :math:`\pi(\beta).`
#
# The posterior distribution of :math:`(\alpha, \beta)` represents the update of the prior information on :math:`(\alpha, \beta)` given the dataset.
# Its PDF is known up to a multiplicative constant:
#
#
# .. math::
# \pi(\alpha, \beta | (t_1, f_1), \ldots, (t_n, f_n) ) \propto \pi(\alpha)\pi(\beta) \left(\frac{\alpha}{\beta}\right)^{\sum_i f_i}
# \left(\prod_{f_i = 1} \frac{t_i}{\beta}\right)^{\alpha-1} \exp\left[-\sum_{i=1}^n\left(\frac{t_i}{\beta}\right)^\alpha\right].
#
# The :class:`~openturns.RandomWalkMetropolisHastings` class can be used to sample from the posterior distribution. It relies on the following objects:
#
# - The prior probability density :math:`\pi(\vect{\theta})` reflects beliefs about the possible values
# of :math:`\vect{\theta} = (\alpha, \beta)` before the experimental data are considered.
# - Initial values :math:`\vect{\theta}_0` of the parameters.
# - An proposal distribution used to update parameters.
#
# Additionally we want to define the likelihood term defined by these objects:
#
# - The conditional density :math:`p(t_{1:n}|f_{1:n}, \alpha, \beta)` will be defined as a :class:`~openturns.PythonDistribution`.
# - The sample of observations acting as the parameters of the conditional density
#
#
#
# Set up the PythonDistribution
# -----------------------------
# The censured Weibull likelihood is outside the usual catalog of probability distributions,
# hence we need to define it using the :class:`~openturns.PythonDistribution` class.
# %%
import numpy as np
import openturns as ot
from openturns.viewer import View
ot.Log.Show(ot.Log.NONE)
ot.RandomGenerator.SetSeed(123)
# %%
# The following methods must be defined:
#
# - `getRange`: required for conversion to the :class:`~openturns.Distribution` format
# - `computeLogPDF`: used by :class:`~openturns.RandomWalkMetropolisHastings` to evaluate the posterior density
# - `setParameter` used by :class:`~openturns.RandomWalkMetropolisHastings` to test new parameter values
#
# .. note::
# We formally define a bivariate distribution on the :math:`(t_i, f_i)` couple, even though :math:`f_i` has no distribution (it is simply a covariate).
# This is not an issue, since the sole purpose of this :class:`~openturns.PythonDistribution` object is to pass
# the likelihood calculation over to :class:`~openturns.RandomWalkMetropolisHastings`.
# %%
class CensoredWeibull(ot.PythonDistribution):
"""
Right-censored Weibull log-PDF calculation
Each data point x is assumed 2D, with:
x[0]: observed functioning time
x[1]: nature of x[0]:
if x[1]=0: x[0] is a censoring time
if x[1]=1: x[0] is a time-to failure
"""
def __init__(self, beta=5000.0, alpha=2.0):
super(CensoredWeibull, self).__init__(2)
self.beta = beta
self.alpha = alpha
def getRange(self):
return ot.Interval([0, 0], [1, 1], [True] * 2, [False, True])
def computeLogPDF(self, x):
if not (self.alpha > 0.0 and self.beta > 0.0):
return -np.inf
log_pdf = -((x[0] / self.beta) ** self.alpha)
log_pdf += (self.alpha - 1) * np.log(x[0] / self.beta) * x[1]
log_pdf += np.log(self.alpha / self.beta) * x[1]
return log_pdf
def setParameter(self, parameter):
self.beta = parameter[0]
self.alpha = parameter[1]
def getParameter(self):
return [self.beta, self.alpha]
# %%
# Convert to :class:`~openturns.Distribution`
# %%
conditional = ot.Distribution(CensoredWeibull())
# %%
# Observations, prior, initial point and proposal distributions
# -------------------------------------------------------------
#
# Define the observations
# %%
Tobs = np.array([4380, 1791, 1611, 1291, 6132, 5694, 5296, 4818, 4818, 4380])
fail = np.array([True] * 4 + [False] * 6)
x = ot.Sample(np.vstack((Tobs, fail)).T)
# %%
# Define a uniform prior distribution for :math:`\alpha` and a Gamma prior distribution for :math:`\beta`.
#
# %%
alpha_min, alpha_max = 0.5, 3.8
a_beta, b_beta = 2, 2e-4
priorCopula = ot.IndependentCopula(2) # prior independence
priorMarginals = [] # prior marginals
priorMarginals.append(ot.Gamma(a_beta, b_beta)) # Gamma prior for beta
priorMarginals.append(ot.Uniform(alpha_min, alpha_max)) # uniform prior for alpha
prior = ot.JointDistribution(priorMarginals, priorCopula)
prior.setDescription(["beta", "alpha"])
# %%
# We select prior means as the initial point of the Metropolis-Hastings algorithm.
#
# %%
initialState = [a_beta / b_beta, 0.5 * (alpha_max - alpha_min)]
# %%
# For our random walk proposal distributions, we choose normal steps, with standard deviation equal to roughly :math:`10\%` of the prior range (for the uniform prior)
# or standard deviation (for the normal prior).
#
# %%
proposal = []
proposal.append(ot.Normal(0.0, 0.1 * np.sqrt(a_beta / b_beta**2)))
proposal.append(ot.Normal(0.0, 0.1 * (alpha_max - alpha_min)))
proposal = ot.JointDistribution(proposal)
# %%
# Sample from the posterior distribution
# --------------------------------------
# %%
sampler = ot.RandomWalkMetropolisHastings(prior, initialState, proposal)
sampler.setLikelihood(conditional, x)
sampleSize = 10000
sample = sampler.getSample(sampleSize)
# compute acceptance rate
print("Acceptance rate: %s" % (sampler.getAcceptanceRate()))
# %%
# Plot prior to posterior marginal plots.
#
# %%
kernel = ot.KernelSmoothing()
posterior = kernel.build(sample)
grid = ot.GridLayout(1, 2)
grid.setTitle("Bayesian inference")
for parameter_index in range(2):
graph = posterior.getMarginal(parameter_index).drawPDF()
priorGraph = prior.getMarginal(parameter_index).drawPDF()
graph.add(priorGraph)
graph.setLegends(["Posterior", "Prior"])
grid.setGraph(0, parameter_index, graph)
_ = View(grid)
# %%
# Define an improper prior
# --------------------------
# %%
# Now, define an improper prior:
#
# .. math::
# \mathcal \pi(\beta, \alpha) \propto \frac{1}{\beta}.
#
logpdf = ot.SymbolicFunction(["beta", "alpha"], ["-log(beta)"])
support = ot.Interval([0] * 2, [1] * 2)
support.setFiniteUpperBound([False] * 2)
# %%
# Sample from the posterior distribution
sampler2 = ot.RandomWalkMetropolisHastings(logpdf, support, initialState, proposal)
sampler2.setLikelihood(conditional, x)
sample2 = sampler2.getSample(1000)
print("Acceptance rate: %s" % (sampler2.getAcceptanceRate()))
# %%
# Plot posterior marginal plots only as prior cannot be drawn meaningfully.
#
# %%
kernel = ot.KernelSmoothing()
posterior = kernel.build(sample)
grid = ot.GridLayout(1, 2)
grid.setTitle("Bayesian inference (with log-pdf)")
for parameter_index in range(2):
graph = posterior.getMarginal(parameter_index).drawPDF()
graph.setLegends(["Posterior"])
grid.setGraph(0, parameter_index, graph)
_ = View(grid)
# %%
View.ShowAll()
|