File: plot_rwmh_python_distribution.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (250 lines) | stat: -rw-r--r-- 8,617 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
"""
Posterior sampling using a PythonDistribution
=============================================
"""

# %%
# In this example we are going to show how to do Bayesian inference using the :class:`~openturns.RandomWalkMetropolisHastings` algorithm
# in a statistical model defined through a :class:`~openturns.PythonDistribution`.
#
# This method is illustrated on a simple lifetime study test-case, which involves censored data, as described hereafter.
#
# In the following, we assume that the lifetime :math:`T_i` of an industrial component follows the Weibull distribution :math:`\mathcal W(\alpha, \beta)`,
# with CDF given by :math:`F(t|\alpha,\beta)= 1 - e^{-\left( \frac{t}{\beta} \right)^\alpha}`.
#
# Our goal is to estimate the model parameters :math:`\alpha, \beta` based on
# a dataset of recorded failures :math:`(t_1, \ldots, t_n),` some of which
# correspond to actual failures, and the remaining are right-censored.
# Let :math:`(f_1, \ldots, f_n) \in \{0,1\}^n` represent the nature of each
# datum, :math:`f_i=1` if :math:`t_i` corresponds to an actual failure,
# :math:`f_i=0` if it is right-censored.
#
# Note that the likelihood of each recorded failure is given by the Weibull density:
#
# .. math::
#   \mathcal L(t_i | f_i=1, \alpha, \beta) = \frac{\alpha}{\beta}\left( \frac{t_i}{\beta} \right)^{\alpha-1} e^{-\left( \frac{t_i}{\beta} \right)^\alpha}.
#
# On the other hand, the likelihood of each right-censored observation is given by:
#
# .. math::
#   \mathcal L(t_i | f_i=0, \alpha, \beta) = e^{-\left( \frac{t_i}{\beta} \right)^\alpha}.
#
# Furthermore, assume that the prior information available on :math:`\alpha, \beta` is represented by independent prior laws,
# whose respective densities are denoted by :math:`\pi(\alpha)` and :math:`\pi(\beta).`
#
# The posterior distribution of :math:`(\alpha, \beta)` represents the update of the prior information on :math:`(\alpha, \beta)` given the dataset.
# Its PDF is known up to a multiplicative constant:
#
#
# .. math::
#   \pi(\alpha, \beta | (t_1, f_1), \ldots, (t_n, f_n) ) \propto \pi(\alpha)\pi(\beta) \left(\frac{\alpha}{\beta}\right)^{\sum_i f_i}
#   \left(\prod_{f_i = 1} \frac{t_i}{\beta}\right)^{\alpha-1} \exp\left[-\sum_{i=1}^n\left(\frac{t_i}{\beta}\right)^\alpha\right].
#
# The :class:`~openturns.RandomWalkMetropolisHastings` class can be used to sample from the posterior distribution. It relies on the following objects:
#
# - The prior probability density :math:`\pi(\vect{\theta})` reflects beliefs about the possible values
#   of :math:`\vect{\theta} = (\alpha, \beta)` before the experimental data are considered.
# - Initial values :math:`\vect{\theta}_0` of the parameters.
# - An proposal distribution used to update parameters.
#
# Additionally we want to define the likelihood term defined by these objects:
#
# - The conditional density :math:`p(t_{1:n}|f_{1:n}, \alpha, \beta)` will be defined as a :class:`~openturns.PythonDistribution`.
# - The sample of observations acting as the parameters of the conditional density
#
#
#
# Set up the PythonDistribution
# -----------------------------
# The censured Weibull likelihood is outside the usual catalog of probability distributions,
# hence we need to define it using the :class:`~openturns.PythonDistribution` class.


# %%
import numpy as np
import openturns as ot
from openturns.viewer import View

ot.Log.Show(ot.Log.NONE)
ot.RandomGenerator.SetSeed(123)

# %%
# The following methods must be defined:
#
# - `getRange`: required for conversion to the :class:`~openturns.Distribution` format
# - `computeLogPDF`: used by :class:`~openturns.RandomWalkMetropolisHastings` to evaluate the posterior density
# - `setParameter` used by :class:`~openturns.RandomWalkMetropolisHastings` to test new parameter values
#
# .. note::
#    We formally define a bivariate distribution on the :math:`(t_i, f_i)` couple, even though :math:`f_i` has no distribution (it is simply a covariate).
#    This is not an issue, since the sole purpose of this :class:`~openturns.PythonDistribution` object is to pass
#    the likelihood calculation over to :class:`~openturns.RandomWalkMetropolisHastings`.

# %%


class CensoredWeibull(ot.PythonDistribution):
    """
    Right-censored Weibull log-PDF calculation
    Each data point x is assumed 2D, with:
        x[0]: observed functioning time
        x[1]: nature of x[0]:
            if x[1]=0: x[0] is a censoring time
            if x[1]=1: x[0] is a time-to failure
    """

    def __init__(self, beta=5000.0, alpha=2.0):
        super(CensoredWeibull, self).__init__(2)
        self.beta = beta
        self.alpha = alpha

    def getRange(self):
        return ot.Interval([0, 0], [1, 1], [True] * 2, [False, True])

    def computeLogPDF(self, x):
        if not (self.alpha > 0.0 and self.beta > 0.0):
            return -np.inf
        log_pdf = -((x[0] / self.beta) ** self.alpha)
        log_pdf += (self.alpha - 1) * np.log(x[0] / self.beta) * x[1]
        log_pdf += np.log(self.alpha / self.beta) * x[1]
        return log_pdf

    def setParameter(self, parameter):
        self.beta = parameter[0]
        self.alpha = parameter[1]

    def getParameter(self):
        return [self.beta, self.alpha]


# %%
# Convert to :class:`~openturns.Distribution`

# %%


conditional = ot.Distribution(CensoredWeibull())


# %%
# Observations, prior, initial point and proposal distributions
# -------------------------------------------------------------
#
# Define the observations


# %%

Tobs = np.array([4380, 1791, 1611, 1291, 6132, 5694, 5296, 4818, 4818, 4380])
fail = np.array([True] * 4 + [False] * 6)
x = ot.Sample(np.vstack((Tobs, fail)).T)


# %%
# Define a uniform prior distribution for :math:`\alpha` and a Gamma prior distribution for :math:`\beta`.
#

# %%

alpha_min, alpha_max = 0.5, 3.8
a_beta, b_beta = 2, 2e-4

priorCopula = ot.IndependentCopula(2)  # prior independence
priorMarginals = []  # prior marginals
priorMarginals.append(ot.Gamma(a_beta, b_beta))  # Gamma prior for beta
priorMarginals.append(ot.Uniform(alpha_min, alpha_max))  # uniform prior for alpha
prior = ot.JointDistribution(priorMarginals, priorCopula)
prior.setDescription(["beta", "alpha"])


# %%
# We select prior means as the initial point of the Metropolis-Hastings algorithm.
#

# %%

initialState = [a_beta / b_beta, 0.5 * (alpha_max - alpha_min)]

# %%
# For our random walk proposal distributions, we choose normal steps, with standard deviation equal to roughly :math:`10\%` of the prior range (for the uniform prior)
# or standard deviation (for the normal prior).
#

# %%

proposal = []
proposal.append(ot.Normal(0.0, 0.1 * np.sqrt(a_beta / b_beta**2)))
proposal.append(ot.Normal(0.0, 0.1 * (alpha_max - alpha_min)))
proposal = ot.JointDistribution(proposal)

# %%
# Sample from the posterior distribution
# --------------------------------------

# %%

sampler = ot.RandomWalkMetropolisHastings(prior, initialState, proposal)
sampler.setLikelihood(conditional, x)
sampleSize = 10000
sample = sampler.getSample(sampleSize)
# compute acceptance rate
print("Acceptance rate: %s" % (sampler.getAcceptanceRate()))

# %%
# Plot prior to posterior marginal plots.
#

# %%
kernel = ot.KernelSmoothing()
posterior = kernel.build(sample)
grid = ot.GridLayout(1, 2)
grid.setTitle("Bayesian inference")
for parameter_index in range(2):
    graph = posterior.getMarginal(parameter_index).drawPDF()
    priorGraph = prior.getMarginal(parameter_index).drawPDF()
    graph.add(priorGraph)
    graph.setLegends(["Posterior", "Prior"])
    grid.setGraph(0, parameter_index, graph)
_ = View(grid)

# %%
# Define an improper prior
# --------------------------

# %%
# Now, define an improper prior:
#
# .. math::
#   \mathcal \pi(\beta, \alpha) \propto \frac{1}{\beta}.
#

logpdf = ot.SymbolicFunction(["beta", "alpha"], ["-log(beta)"])
support = ot.Interval([0] * 2, [1] * 2)
support.setFiniteUpperBound([False] * 2)

# %%
# Sample from the posterior distribution

sampler2 = ot.RandomWalkMetropolisHastings(logpdf, support, initialState, proposal)
sampler2.setLikelihood(conditional, x)
sample2 = sampler2.getSample(1000)
print("Acceptance rate: %s" % (sampler2.getAcceptanceRate()))

# %%
# Plot posterior marginal plots only as prior cannot be drawn meaningfully.
#

# %%
kernel = ot.KernelSmoothing()
posterior = kernel.build(sample)
grid = ot.GridLayout(1, 2)
grid.setTitle("Bayesian inference (with log-pdf)")
for parameter_index in range(2):
    graph = posterior.getMarginal(parameter_index).drawPDF()
    graph.setLegends(["Posterior"])
    grid.setGraph(0, parameter_index, graph)
_ = View(grid)


# %%
View.ShowAll()