1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
"""
Estimate a conditional quantile
===============================
"""
# sphinx_gallery_thumbnail_number = 8
# %%
# From a multivariate data sample, we estimate a distribution with kernel smoothing.
# Here we present a bivariate distribution :math:`X= (X_1, X_2)`.
# We use the `computeConditionalQuantile` method to estimate the 90% quantile :math:`Q_1` of the conditional variable :math:`X_2|X_1` :
#
# .. math::
# Q_2 : x_1 \mapsto q_{0.9}(X_2|X_1=x_1)
#
# We then draw the curve :math:`Q_2 : x_1 \mapsto Q_2(x_1)`.
# We first start with independent Normals then we consider dependent marginals with a Clayton copula.
#
# %%
import openturns as ot
import openturns.viewer as viewer
import numpy as np
ot.Log.Show(ot.Log.NONE)
# %%
# Set the random generator seed
ot.RandomGenerator.SetSeed(0)
# %%
# Defining the marginals
# ----------------------
#
# We consider two independent Normal marginals :
X1 = ot.Normal(0.0, 1.0)
X2 = ot.Normal(0.0, 3.0)
# %%
# Independent marginals
# ---------------------
distX = ot.JointDistribution([X1, X2])
sample = distX.getSample(1000)
# %%
# Let's see the data
# %%
graph = ot.Graph("2D-Normal sample", "x1", "x2", True, "")
cloud = ot.Cloud(sample, "blue", "fsquare", "My Cloud")
graph.add(cloud)
graph.setXTitle("$X_1$")
graph.setYTitle("$X_2$")
graph.setTitle("A sample from $X=(X_1, X_2)$")
view = viewer.View(graph)
# %%
# We draw the isolines of the PDF of :math:`X` :
graph = distX.drawPDF()
graph.setXTitle("$X_1$")
graph.setYTitle("$X_2$")
graph.setTitle("iso-PDF of $X=(X_1, X_2)$")
view = viewer.View(graph)
# %%
# We estimate the density with kernel smoothing :
kernel = ot.KernelSmoothing()
estimated = kernel.build(sample)
# %%
# We draw the isolines of the estimated PDF of :math:`X` :
graph = estimated.drawPDF()
graph.setXTitle("$X_1$")
graph.setYTitle("$X_2$")
graph.setTitle("iso-PDF of $X=(X_1, X_2)$ estimated by kernel smoothing")
view = viewer.View(graph)
# %%
# We can compute the conditional quantile of :math:`X_2 | X_1` with the `computeConditionalQuantile` method and draw it after.
#
# %%
# We first create :math:`\sampleSize` observation points in :math:`[-3.0, 3.0]` :
# %%
N = 301
xobs = np.linspace(-3.0, 3.0, N)
sampleObs = ot.Sample([[xi] for xi in xobs])
# %%
# We create curves of the exact and approximated quantile :math:`Q_1`
# %%
x = [xi for xi in xobs]
yapp = [estimated.computeConditionalQuantile(0.9, sampleObs[i]) for i in range(N)]
yex = [distX.computeConditionalQuantile(0.9, sampleObs[i]) for i in range(N)]
# %%
cxy_app = ot.Curve(x, yapp)
cxy_ex = ot.Curve(x, yex)
graph = ot.Graph("90% quantile of $X_2 | X_1=x_1$", "$x_1$", "$Q_2(x_1)$", True, "")
graph.add(cxy_app)
graph.add(cxy_ex)
graph.setLegends(["$Q_2$ kernel smoothing", "$Q_2$ exact"])
graph.setLegendPosition("lower right")
view = viewer.View(graph)
# %%
# In this case the :math:`Q_2` quantile is constant because of the independence of the marginals.
#
# %%
# Dependence through a Clayton copula
# -----------------------------------
#
# We now define a Clayton copula to model the dependence between our marginals.
# The Clayton copula is a bivariate asymmmetric Archimedean copula, exhibiting greater dependence
# in the negative tail than in the positive.
#
# %%
copula = ot.ClaytonCopula(2.5)
distX = ot.JointDistribution([X1, X2], copula)
# %%
# We generate a sample from the distribution :
sample = distX.getSample(1000)
# %%
# Let's see the data
# %%
graph = ot.Graph("2D-Normal sample", "x1", "x2", True, "")
cloud = ot.Cloud(sample, "blue", "fsquare", "My Cloud")
graph.add(cloud)
graph.setXTitle("$X_1$")
graph.setYTitle("$X_2$")
graph.setTitle("A sample from $X=(X_1, X_2)$")
view = viewer.View(graph)
# %%
# We draw the isolines of the PDF of :math:`X` :
graph = distX.drawPDF()
graph.setXTitle("$X_1$")
graph.setYTitle("$X_2$")
graph.setTitle("iso-PDF of $X=(X_1, X_2)$")
view = viewer.View(graph)
# %%
# We estimate the density with kernel smoothing :
kernel = ot.KernelSmoothing()
estimated = kernel.build(sample)
# %%
# We draw the isolines of the estimated PDF of :math:`X` :
graph = estimated.drawPDF()
graph.setXTitle("$X_1$")
graph.setYTitle("$X_2$")
graph.setTitle("iso-PDF of $X=(X_1, X_2)$ estimated by kernel smoothing")
view = viewer.View(graph)
# %%
# We can compute the conditional quantile of :math:`X_2 | X_1=x1` with the `computeConditionalQuantile` method and draw it after.
#
# %%
# We first create :math:`\sampleSize` observation points in :math:`[-3.0, 3.0]` :
# %%
N = 301
xobs = np.linspace(-3.0, 3.0, N)
sampleObs = ot.Sample([[xi] for xi in xobs])
# %%
# We create curves of the exact and approximated quantile :math:`Q_1`
# %%
x = [xi for xi in xobs]
yapp = [estimated.computeConditionalQuantile(0.9, sampleObs[i]) for i in range(N)]
yex = [distX.computeConditionalQuantile(0.9, sampleObs[i]) for i in range(N)]
# %%
cxy_app = ot.Curve(x, yapp)
cxy_ex = ot.Curve(x, yex)
graph = ot.Graph("90% quantile of $X_2 | X_1=x_1$", "$x_1$", "$Q_2(x_1)$", True, "")
graph.add(cxy_app)
graph.add(cxy_ex)
graph.setLegends(["$Q_2$ kernel smoothing", "$Q_2$ exact"])
graph.setLegendPosition("lower right")
view = viewer.View(graph)
# %%
# Our estimated conditional quantile is a good approximate and should be better the more data we have. We can observe it by increasing the number of samples.
# %%
# Display the graphs
view.ShowAll()
|