1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
|
"""
Define a distribution from quantiles
====================================
"""
# %%
# In this example we are going to estimate a parametric distribution by numerical optimization of some quantiles.
# %%
import openturns as ot
from openturns.viewer import View
# %%
# We need as many quantile values as there are parameters
# of the distribution.
# For example, for a Normal distribution, the two parameters are the mean and the
# standard deviation.
# This implies that two quantiles are required to estimate the parameters
# of a Normal distribution.
# The values of the parameters :math:`\mu`, :math:`\sigma` will be used as the reference to assess the optimization.
dist_ref = ot.Normal(17.0, 34.0)
dist_ref.setDescription(["reference"])
p1 = 0.05
p2 = 0.95
q1 = dist_ref.computeQuantile(p1)[0]
q2 = dist_ref.computeQuantile(p2)[0]
print(q1, q2)
# %%
# Fit a Normal distribution from these quantiles by numerical optimization.
# Ensure we get the same values as the reference.
factory = ot.QuantileMatchingFactory(ot.Normal(), [p1, p2])
dist_estim = factory.buildFromQuantiles([q1, q2])
dist_estim.setDescription(["estimated"])
print(dist_estim)
# %%
# Graphically validate if the estimated distribution verifies the imposed quantiles.
graph = dist_estim.drawCDF()
curve_q1 = ot.Curve([q1, q1, 0.0], [0.0, p1, p1])
curve_q2 = ot.Curve([q2, q2, 0.0], [0.0, p2, p2])
graph.add(curve_q1)
graph.add(curve_q2)
text_q1 = ot.Text([[q1, -0.1]], [r"$q_1$"])
text_p1 = ot.Text([[0.0, p1]], [r"$p_1$"])
graph.add(text_q1)
graph.add(text_p1)
text_q2 = ot.Text([[q2, -0.1]], [r"$q_2$"])
text_p2 = ot.Text([[0.0, p2]], [r"$p_2$"])
graph.add(text_q2)
graph.add(text_p2)
_ = View(graph)
# %%
# It is also possible to define a Histogram distribution from quantiles.
# As it is a non-parametric distribution we can define as many quantiles as needed.
N = 10
probabilities = [(i + 1) / N for i in range(N)]
probabilities[-1] = 1.0 - 1e-3
quantiles = [dist_ref.computeQuantile(pi)[0] for pi in probabilities]
# %%
# The service is part of the :class:`~openturns.HistogramFactory` class.
# We also need to define the lower bound of the Histogram to build the distribution.
lowerBound = quantiles[0] - 10.0
histo_quant = ot.HistogramFactory().buildFromQuantiles(
lowerBound, probabilities, quantiles
)
# %%
# Graphically validate if the estimated distribution verifies the imposed quantiles.
# We can see that the CDF of the estimated Histogram matches all the quantile dots.
histo_quant.setDescription(["estimated"])
graph = histo_quant.drawCDF()
curve_qi = ot.Cloud(quantiles, probabilities)
curve_qi.setLegend("quantiles")
graph.add(curve_qi)
_ = View(graph)
View.ShowAll()
|