1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
|
"""
Kriging : draw covariance models
================================
"""
import openturns as ot
import openturns.viewer as otv
from matplotlib import pylab as plt
import pylab as pl
# %%
# Abstract
# --------
#
# Gaussian processes are a common fixture in `UQ`.
# They are defined by their covariance function and the library implements several of them.
# In this example we plot covariance functions and modify their parameters
# for two families of models: the generalized exponential model and the Matérn models.
#
# For visualization sake, we limit ourselves to the dimension 1.
dimension = 1
# %%
# We set the lower bound to zero for stationary kernels
ot.ResourceMap.SetAsScalar("CovarianceModel-DefaultTMin", 0.0)
# %%
# The generalized exponential model
# ---------------------------------
#
# The :class:`~openturns.GeneralizedExponential` class implements a generalized exponential with a
# parameter :math:`p < 0 \leq 2` exponent. The case :math:`p=1` is the standard exponential model
# while :math:`p=2` is the squared exponential.
#
# %%
# Various parameters p and a fixed correlation length of 0.1
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# In this part we set the correlation length to :math:`\theta = 0.1` and study three different models
# with parameters :math:`p=0.25`, :math:`p=1` and :math:`p=2` and trajectories from Gaussian processes
# based on these models.
# %%
# We define the :math:`p = 0.25` generalized exponential model :
covarianceModel = ot.GeneralizedExponential([0.1], 0.25)
# %%
# We define the :math:`p = 1` generalized exponential model :
covarianceModel2 = ot.GeneralizedExponential([0.1], 1.0)
# %%
# We define the :math:`p = 2` generalized exponential model :
covarianceModel3 = ot.GeneralizedExponential([0.1], 2.0)
# %%
# We draw the covariance models :
graphModel = covarianceModel.draw()
graphModel.add(covarianceModel2.draw())
graphModel.add(covarianceModel3.draw())
graphModel.setColors(["green", "orange", "blue"])
graphModel.setXTitle(r"$\tau = \|s-t\|$")
graphModel.setYTitle(r"$C(\tau)$")
graphModel.setLegends([r"$p = 0.25$", r"$p = 1$", r"$p = 2$"])
# %%
# For each covariance model we build a Gaussian process and generate a random trajectory of
# on :math:`[-1,1]`.
# We first build a discretization of this interval with a regular grid with step 0.01.
xmin = -1.0
step = 0.01
n = 200
grid1D = ot.RegularGrid(xmin, step, n + 1)
nbTrajectories = 1
# %%
# We define the first Gaussian process and its trajectory :
process = ot.GaussianProcess(covarianceModel, grid1D)
sample = process.getSample(nbTrajectories)
# %%
# then the second one and its trajectory :
process2 = ot.GaussianProcess(covarianceModel2, grid1D)
sample2 = process2.getSample(nbTrajectories)
# %%
# and finally the third one and its trajectory :
process3 = ot.GaussianProcess(covarianceModel3, grid1D)
sample3 = process3.getSample(nbTrajectories)
# %%
# We draw the trajectories :
graphTraj = sample.drawMarginal(0)
graphTraj.add(sample2.drawMarginal(0))
graphTraj.add(sample3.drawMarginal(0))
graphTraj.setXTitle(r"$x$")
graphTraj.setYTitle(r"$GP_{\nu}(x)$")
graphTraj.setTitle("Random realization from the covariance model")
graphTraj.setColors(["green", "orange", "blue"])
graphTraj.setLegends([r"$p = 0.25$", r"$p = 1$", r"$p = 2$"])
# %%
# We present each covariance model and the corresponding trajectory side by side.
fig = pl.figure(figsize=(12, 4))
ax_pdf = fig.add_subplot(1, 2, 1)
_ = otv.View(graphModel, figure=fig, axes=[ax_pdf])
ax_cdf = fig.add_subplot(1, 2, 2)
_ = otv.View(graphTraj, figure=fig, axes=[ax_cdf])
_ = fig.suptitle(r"Generalized Exponential Model : influence of the p parameter")
# %%
# The blue trajectory corresponding to the parameter :math:`p=2` is smooth as expected as compared with
# the :math:`p=0.25` process which is less regular.
# %%
# The exponential model (:math:`p=1`)
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# In the case of the exponential model (:math:`p=1`) we show the influence of the correlation length on
# the trajectories.
#
# %%
# with correlation length :math:`\theta = 0.01` :
covarianceModel = ot.GeneralizedExponential([0.01], 1.0)
# %%
# with correlation length :math:`\theta = 0.1` :
covarianceModel2 = ot.GeneralizedExponential([0.1], 1.0)
# %%
# with correlation length :math:`\theta = 1.0`
covarianceModel3 = ot.GeneralizedExponential([1.0], 1.0)
# %%
# We draw the covariance models :
graphModel = covarianceModel.draw()
graphModel.add(covarianceModel2.draw())
graphModel.add(covarianceModel3.draw())
graphModel.setColors(["green", "orange", "blue"])
graphModel.setXTitle(r"$\tau = \|s-t\|$")
graphModel.setYTitle(r"$C(\tau)$")
graphModel.setLegends([r"$\theta = 0.01$", r"$\theta = 0.1$", r"$\theta = 1$"])
# %%
# For each covariance model we build a Gaussian process and generate a random trajectory of
# on :math:`[-1,1]`.
# We first build a discretization of this interval with a regular grid with step 0.01.
xmin = -1.0
step = 0.01
n = 200
grid1D = ot.RegularGrid(xmin, step, n + 1)
nbTrajectories = 1
# %%
# We define the first Gaussian process and its trajectory :
process = ot.GaussianProcess(covarianceModel, grid1D)
sample = process.getSample(nbTrajectories)
# %%
# then the second one and its trajectory :
process2 = ot.GaussianProcess(covarianceModel2, grid1D)
sample2 = process2.getSample(nbTrajectories)
# %%
# and finally the third one and its trajectory :
process3 = ot.GaussianProcess(covarianceModel3, grid1D)
sample3 = process3.getSample(nbTrajectories)
# %%
# We draw the trajectories :
graphTraj = sample.drawMarginal(0)
graphTraj.add(sample2.drawMarginal(0))
graphTraj.add(sample3.drawMarginal(0))
graphTraj.setXTitle(r"$x$")
graphTraj.setYTitle(r"$GP_{\theta}(x)$")
graphTraj.setTitle("Random realization from the covariance model")
graphTraj.setColors(["green", "orange", "blue"])
graphTraj.setLegends([r"$\theta = 0.01$", r"$\theta = 0.1$", r"$\theta = 1$"])
# %%
# We present each covariance model and the corresponding tracjectory side by side.
fig = pl.figure(figsize=(12, 4))
ax_pdf = fig.add_subplot(1, 2, 1)
_ = otv.View(graphModel, figure=fig, axes=[ax_pdf])
ax_cdf = fig.add_subplot(1, 2, 2)
_ = otv.View(graphTraj, figure=fig, axes=[ax_cdf])
_ = fig.suptitle(r"Exponential Model : influence of correlation length $\theta$")
# %%
# We observe a smoother trajectory with a high correlation value.
# %%
# The squared exponential (:math:`p=2`)
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
#
# In the case of the squared exponential model (:math:`p=2`) we show the influence of the correlation length on
# the trajectories.
#
# %%
# with correlation length :math:`\theta = 0.01` :
covarianceModel = ot.GeneralizedExponential([0.01], 2.0)
# %%
# with correlation length :math:`\theta = 0.1` :
covarianceModel2 = ot.GeneralizedExponential([0.1], 2.0)
# %%
# with correlation length :math:`\theta = 1.0`
covarianceModel3 = ot.GeneralizedExponential([1.0], 2.0)
# %%
# We draw the covariance models :
graphModel = covarianceModel.draw()
graphModel.add(covarianceModel2.draw())
graphModel.add(covarianceModel3.draw())
graphModel.setColors(["green", "orange", "blue"])
graphModel.setXTitle(r"$\tau = \|s-t\|$")
graphModel.setYTitle(r"$C(\tau)$")
graphModel.setLegends([r"$\theta = 0.01$", r"$\theta = 0.1$", r"$\theta = 1$"])
# %%
# For each covariance model we build a Gaussian process and generate a random trajectory of
# on :math:`[-1,1]`.
# We first build a discretization of this interval with a regular grid with step 0.01.
xmin = -1.0
step = 0.01
n = 200
grid1D = ot.RegularGrid(xmin, step, n + 1)
nbTrajectories = 1
# %%
# We define the first Gaussian process and its trajectory :
process = ot.GaussianProcess(covarianceModel, grid1D)
sample = process.getSample(nbTrajectories)
# %%
# then the second one and its trajectory :
process2 = ot.GaussianProcess(covarianceModel2, grid1D)
sample2 = process2.getSample(nbTrajectories)
# %%
# and finally the third one and its trajectory :
process3 = ot.GaussianProcess(covarianceModel3, grid1D)
sample3 = process3.getSample(nbTrajectories)
# %%
# We draw the trajectories :
graphTraj = sample.drawMarginal(0)
graphTraj.add(sample2.drawMarginal(0))
graphTraj.add(sample3.drawMarginal(0))
graphTraj.setXTitle(r"$x$")
graphTraj.setYTitle(r"$GP_{\theta}(x)$")
graphTraj.setTitle("Random realization from the covariance model")
graphTraj.setColors(["green", "orange", "blue"])
graphTraj.setLegends([r"$\theta = 0.01$", r"$\theta = 0.1$", r"$\theta = 1$"])
# %%
# We present each covariance model and the corresponding tracjectory side by side.
fig = pl.figure(figsize=(12, 4))
ax_pdf = fig.add_subplot(1, 2, 1)
_ = otv.View(graphModel, figure=fig, axes=[ax_pdf])
ax_cdf = fig.add_subplot(1, 2, 2)
_ = otv.View(graphTraj, figure=fig, axes=[ax_cdf])
_ = fig.suptitle(
r"Squared exponential model : influence of correlation length $\theta$"
)
# %%
# Except for very small values of the correlation length, trajectories are usually smooth. It is the
# main effect of the squared exponential model which leads to smooth processes.
# %%
# The Matérn covariance model
# ---------------------------
#
# The :class:`~openturns.MaternModel` class implements the Matern model of parameter :math:`\nu`.
# This parameter controls the smoothness of the process : for any :math:`\nu = n + \frac{1}{2}` the
# process is :math:`n` times continuously differentiable.
# %%
# Influence of the regularity
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# In this paragraph we represent three models with different regularity and generate the
# corresponding random trajectories. We shall use :math:`\nu = 0.5`, :math:`\nu = 1.5` and
# :math:`\nu = 2.5` and observe the regularity.
#
# %%
# We define the :math:`\nu = 0.5` Matern model :
covarianceModel = ot.MaternModel([1.0], 0.5)
# %%
# We define the :math:`\nu = 1.5` Matern model :
covarianceModel2 = ot.MaternModel([1.0], 1.5)
# %%
# We define the :math:`\nu = 2.5` Matern model :
covarianceModel3 = ot.MaternModel([1.0], 2.5)
# %%
# We draw the covariance models :
graphModel = covarianceModel.draw()
graphModel.add(covarianceModel2.draw())
graphModel.add(covarianceModel3.draw())
graphModel.setColors(["green", "orange", "blue"])
graphModel.setXTitle(r"$\tau = \|s-t\|$")
graphModel.setYTitle(r"$C(\tau)$")
graphModel.setLegends([r"$\nu = 1/2$", r"$\nu = 3/2$", r"$\nu = 5/2$"])
# %%
# For each covariance model we build a Gaussian process and generate a random trajectory of
# on :math:`[-1,1]`.
# We first build a discretization of this interval with a regular grid with step 0.001.
xmin = -5.0
step = 0.01
n = 1000
grid1D = ot.RegularGrid(xmin, step, n + 1)
nbTrajectories = 1
# %%
# We define the first Gaussian process and its trajectory :
process = ot.GaussianProcess(covarianceModel, grid1D)
sample = process.getSample(nbTrajectories)
# %%
# then the second one and its trajectory :
process2 = ot.GaussianProcess(covarianceModel2, grid1D)
sample2 = process2.getSample(nbTrajectories)
# %%
# and finally the third one and its trajectory :
process3 = ot.GaussianProcess(covarianceModel3, grid1D)
sample3 = process3.getSample(nbTrajectories)
# %%
# We draw the trajectories :
graphTraj = sample.drawMarginal(0)
graphTraj.add(sample2.drawMarginal(0))
graphTraj.add(sample3.drawMarginal(0))
graphTraj.setXTitle(r"$x$")
graphTraj.setYTitle(r"$GP_{\nu}(x)$")
graphTraj.setTitle("Random realization from the covariance model")
graphTraj.setColors(["green", "orange", "blue"])
graphTraj.setLegends([r"$\nu = 1/2$", r"$\nu = 3/2$", r"$\nu = 5/2$"])
# %%
# We present each covariance model and the corresponding tracjectory side by side.
fig = pl.figure(figsize=(12, 4))
ax_pdf = fig.add_subplot(1, 2, 1)
_ = otv.View(graphModel, figure=fig, axes=[ax_pdf])
ax_cdf = fig.add_subplot(1, 2, 2)
_ = otv.View(graphTraj, figure=fig, axes=[ax_cdf])
_ = fig.suptitle(r"Matern model : influence of the regularity $\nu$ parameter")
# %%
# The red trajectory is the least regular (:math:`nu = 0.5`) as it is only continuous. We see that the
# the blue trajectory is more smooth as expected.
# %%
# Variation of the correlation length
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# In this paragraph we fix the regularity by choosing :math:`\nu = 1.5` so we expect a continuously
# differentiable realization.
# We then use three different correlation lengths :math:`\theta = 0.01`, :math:`\theta = 0.1` and
# :math:`\theta = 1.0` and observe the impact on realizations of Gaussian processes based on these
# covariance models.
# %%
# We define the Matern model with :math:`\theta = 0.01` :
covarianceModel = ot.MaternModel([0.01], 1.5)
# %%
# We define the Matern model with :math:`\theta = 0.1` :
covarianceModel2 = ot.MaternModel([0.1], 1.5)
# %%
# We define the Matern model with :math:`\theta = 1.0` :
covarianceModel3 = ot.MaternModel([1.0], 1.5)
# %%
# We draw the covariance models :
graphModel = covarianceModel.draw()
graphModel.add(covarianceModel2.draw())
graphModel.add(covarianceModel3.draw())
graphModel.setColors(["green", "orange", "blue"])
graphModel.setXTitle(r"$\tau = \|s-t\|$")
graphModel.setYTitle(r"$C(\tau)$")
graphModel.setTitle("Matern covariance model with \nu = 3/2")
graphModel.setLegends([r"$\theta = 0.01$", r"$\theta = 0.1$", r"$\theta = 1.0$"])
# %%
# For each covariance model we build a Gaussian process and generate a random trajectory of
# on :math:`[-1,1]`.
# We build a discretization of this interval with a regular grid with step 0.01.
xmin = -1.0
step = 0.01
n = 200
grid1D = ot.RegularGrid(xmin, step, n + 1)
nbTrajectories = 1
# %%
# We define the first Gaussian process and its trajectory :
process = ot.GaussianProcess(covarianceModel, grid1D)
sample = process.getSample(nbTrajectories)
# %%
# then the second process :
process2 = ot.GaussianProcess(covarianceModel2, grid1D)
sample2 = process2.getSample(nbTrajectories)
# %%
# and the third one :
process3 = ot.GaussianProcess(covarianceModel3, grid1D)
sample3 = process3.getSample(nbTrajectories)
# %%
# We draw the trajectories :
graphTraj = sample.drawMarginal(0)
graphTraj.add(sample2.drawMarginal(0))
graphTraj.add(sample3.drawMarginal(0))
graphTraj.setXTitle(r"$x$")
graphTraj.setYTitle(r"$GP_{\theta}(x)$")
graphTraj.setColors(["green", "orange", "blue"])
graphTraj.setLegends([r"$\theta = 0.01$", r"$\theta = 0.1$", r"$\theta = 1.0$"])
# %%
# We present each covariance model and the corresponding tracjectory side by side.
fig = pl.figure(figsize=(12, 4))
ax_pdf = fig.add_subplot(1, 2, 1)
_ = otv.View(graphModel, figure=fig, axes=[ax_pdf])
ax_cdf = fig.add_subplot(1, 2, 2)
_ = otv.View(graphTraj, figure=fig, axes=[ax_cdf])
_ = fig.suptitle("The Matern model : variation of the correlation length")
# %%
# From the previous figure we see that the trajectory of the Gaussian process is smoother with large
# correlation length.
# %%
# Display figures
plt.show()
# %%
# Reset default settings
ot.ResourceMap.Reload()
|