File: plot_gpr_1d.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (285 lines) | stat: -rw-r--r-- 9,938 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
"""
Gaussian Process Regression : quick-start
=========================================
"""

# %%
# Abstract
# --------
#
# In this example, we create a Gaussian process Regression for a function which has
# scalar real inputs and outputs.
# We show how to create the learning and the validation samples.
# We show how to create the metamodel by choosing a trend and a covariance model.
# Finally, we compute the predicted confidence interval using the conditional variance.

# %%
# Introduction
# ------------
#
# We consider the sine function:
#
# .. math::
#    y = \sin(x)
#
#
# for any :math:`x\in[0,12]`.
#
# We want to create a metamodel of this function. This is why we create a sample of :math:`n` observations of the function:
#
# .. math::
#    y_i=\sin(x_i)
#
#
# for :math:`i=1,...,7`, where :math:`x_i` is the i-th input and :math:`y_i` is the corresponding output.
#
# We consider the seven following inputs :
#
# ============ === === === === ===== ==== ======
#  :math:`i`    1   2   3   4    5     6    7
# ============ === === === === ===== ==== ======
#  :math:`x_i`  1   3   4   6   7.9   11   11.5
# ============ === === === === ===== ==== ======
#
# We are going to consider a Gaussian Process Regression metamodel with:
#
# * a constant trend,
# * a Matern covariance model.

# %%
# Creation of the metamodel
# -------------------------
#
# We begin by defining the function `g` as a symbolic function.
# Then we define the `x_train` variable which contains the inputs of the design of experiments of the training step.
# Then we compute the `y_train` corresponding outputs. The variable `n_train` is the size of the training design of experiments.

# %%
import openturns as ot
from openturns import viewer
from matplotlib import pylab as plt
import openturns.experimental as otexp

ot.Log.Show(ot.Log.NONE)

# %%
g = ot.SymbolicFunction(["x"], ["sin(x)"])

# %%
x_train = ot.Sample([[x] for x in [1.0, 3.0, 4.0, 6.0, 7.9, 11.0, 11.5]])
y_train = g(x_train)
n_train = x_train.getSize()
n_train

# %%
# In order to compare the function and its metamodel, we use a test (i.e. validation) design of experiments made of a regular grid of 100 points from 0 to 12.
# Then we convert this grid into a `Sample` and we compute the outputs of the function on this sample.

# %%
xmin = 0.0
xmax = 12.0
n_test = 100
step = (xmax - xmin) / (n_test - 1)
myRegularGrid = ot.RegularGrid(xmin, step, n_test)
x_test = myRegularGrid.getVertices()
y_test = g(x_test)


# %%
# In order to observe the function and the location of the points in the input design of experiments, we define the following functions which plots the data.

# %%

def plot_1d_data(x_data, y_data, type="Curve", legend=None, color=None, linestyle=None):
    """Plot the data (x_data,y_data) as a Cloud/Curve"""
    if type == "Curve":
        graphF = ot.Curve(x_data, y_data)
    else:
        graphF = ot.Cloud(x_data, y_data)
    if legend is not None:
        graphF.setLegend(legend)
    if color is not None:
        graphF.setColor(color)
    if linestyle is not None:
        graphF.setLineStyle(linestyle)
    return graphF


# %%
graph = ot.Graph("test and train", "", "", True, "")
graph.add(plot_1d_data(x_test, y_test, legend="Exact", color="black", linestyle="dashed"))
graph.add(plot_1d_data(x_train, y_train, type="Cloud", legend="Data", color="red"))
graph.setAxes(True)
graph.setXTitle("X")
graph.setYTitle("Y")
graph.setLegendPosition("upper right")
view = viewer.View(graph)

# %%
# We use the :class:`~openturns.ConstantBasisFactory` class to define the trend and the :class:`~openturns.MaternModel` class to define the covariance model.
# This Matérn model is based on the regularity parameter :math:`\nu=3/2`.

# %%
dimension = 1
basis = ot.ConstantBasisFactory(dimension).build()
covarianceModel = ot.MaternModel([1.0] * dimension, 1.5)
fitter_algo = otexp.GaussianProcessFitter(x_train, y_train, covarianceModel, basis)
fitter_algo.run()
fitter_result = fitter_algo.getResult()
gpr_algo = otexp.GaussianProcessRegression(fitter_result)
gpr_algo.run()
gpr_result = gpr_algo.getResult()
print(gpr_result)

# %%
# We observe that the `scale` and `amplitude` hyper-parameters have been optimized by the :meth:`~openturns.experimental.GaussianProcessFitter.run` method.
# Then we get the metamodel with `getMetaModel` and evaluate the outputs of the metamodel on the test design of experiments.

# %%
gprMetamodel = gpr_result.getMetaModel()
y_test_MM = gprMetamodel(x_test)


# %%
# Now we plot Gaussian process Regression output, in addition to the previous plots


# %%
graph = ot.Graph("", "", "", True, "")
graph.add(plot_1d_data(x_test, y_test, legend="Exact", color="black", linestyle="dashed"))
graph.add(plot_1d_data(x_train, y_train, type="Cloud", legend="Data", color="red"))
graph.add(plot_1d_data(x_test, y_test_MM, legend="GPR", color="blue"))
graph.setAxes(True)
graph.setXTitle("X")
graph.setYTitle("Y")
graph.setLegendPosition("upper right")
view = viewer.View(graph)

# %%
# We see that the Gaussian process regression is interpolating. This is what is meant by *conditioning* a Gaussian process.
#
# We see that, when the sine function has a strong curvature between two points which are separated by a large distance (e.g. between :math:`x=4` and :math:`x=6`),
# then the gaussian regression is not close to the function :math:`g`.
# However, when the training points are close (e.g. between :math:`x=11` and :math:`x=11.5`) or when the function is nearly linear (e.g. between :math:`x=8` and :math:`x=11`),
# then the gaussian process regression is quite accurate.

# %%
# Compute confidence bounds
# -------------------------

# %%
# In order to assess the quality of the metamodel, we can estimate the variance and compute a 95% confidence interval associated with the conditioned Gaussian process.
#
# We begin by defining the `alpha` variable containing the complementary of the confidence level than we want to compute.
# Then we compute the quantile of the Gaussian distribution corresponding to `1-alpha/2`. Therefore, the confidence interval is:
#
# .. math::
#    P\in\left(X\in\left[q_{\alpha/2},q_{1-\alpha/2}\right]\right)=1-\alpha.
#
#

# %%
alpha = 0.05


def computeQuantileAlpha(alpha):
    bilateralCI = ot.Normal().computeBilateralConfidenceInterval(1 - alpha)
    return bilateralCI.getUpperBound()[0]


quantileAlpha = computeQuantileAlpha(alpha)
print("alpha=%f" % (alpha))
print("Quantile alpha=%f" % (quantileAlpha))

# %%
# In order to compute the regression error, we can consider the conditional variance.
# The :meth:`~openturns.experimental.GaussianProcessConditionalCovariance.getConditionalMarginalVariance` method returns the covariance matrix `covGrid`
# evaluated at each points in the given sample. Then we can use the diagonal
# coefficients in order to get the marginal conditional Kriging variance.
# Since this is a variance, we use the square root in order to compute the
# standard deviation.
# However, some coefficients in the diagonal are very close to zero and
# nonpositive, which leads to an exception of the sqrt function.
# This is why we add an epsilon on the diagonal (nugget factor), which prevents this issue.

# %%
sqrt = ot.SymbolicFunction(["x"], ["sqrt(x)"])
epsilon = ot.Sample(n_test, [1.0e-8])
gccc = otexp.GaussianProcessConditionalCovariance(gpr_result)
conditionalVariance = gccc.getConditionalMarginalVariance(x_test) + epsilon
conditionalSigma = sqrt(conditionalVariance)

# %%
# The following figure presents the conditional standard deviation depending on :math:`x`.

# %%
graph = ot.Graph(
    "Conditional standard deviation", "x", "Conditional standard deviation", True, ""
)
curve = ot.Curve(x_test, conditionalSigma)
graph.add(curve)
view = viewer.View(graph)


# %%
# We now compute the bounds of the confidence interval. For this purpose we define a small function
# `computeBoundsConfidenceInterval` :


# %%
def computeBoundsConfidenceInterval(quantileAlpha):
    dataLower = [
        [y_test_MM[i, 0] - quantileAlpha * conditionalSigma[i, 0]]
        for i in range(n_test)
    ]
    dataUpper = [
        [y_test_MM[i, 0] + quantileAlpha * conditionalSigma[i, 0]]
        for i in range(n_test)
    ]
    dataLower = ot.Sample(dataLower)
    dataUpper = ot.Sample(dataUpper)
    return dataLower, dataUpper


# %%
# We define two small lists to draw three different confidence intervals (defined by the alpha value) :
alphas = [0.05, 0.1, 0.2]
# three different green colors defined by HSV values
mycolors = [[120, 1.0, 1.0], [120, 1.0, 0.75], [120, 1.0, 0.5]]

# %%
# We are ready to display all the previous information and the three confidence intervals we want.

# %%
# sphinx_gallery_thumbnail_number = 4
graph = ot.Graph("", "", "", True, "")

# Now we loop over the different values :
for idx, v in enumerate(alphas):
    quantileAlpha = computeQuantileAlpha(v)
    vLow, vUp = computeBoundsConfidenceInterval(quantileAlpha)
    boundsPoly = ot.Polygon.FillBetween(x_test, vLow, vUp)
    boundsPoly.setColor(
        ot.Drawable.ConvertFromHSV(mycolors[idx][0], mycolors[idx][1], mycolors[idx][2])
    )
    boundsPoly.setLegend(" %d%% bounds" % ((1.0 - v) * 100))
    graph.add(boundsPoly)

graph.add(plot_1d_data(x_test, y_test, legend="Exact", color="black", linestyle="dashed"))
graph.add(plot_1d_data(x_train, y_train, type="Cloud", legend="Data", color="red"))
graph.add(plot_1d_data(x_test, y_test_MM, legend="GPR", color="blue"))

graph.setAxes(True)
graph.setXTitle("X")
graph.setYTitle("Y")
graph.setLegendPosition("upper right")
view = viewer.View(graph)

# %%
# We see that the confidence intervals are small in the regions where two
# consecutive training points are close to each other
# (e.g. between :math:`x=11` and :math:`x=11.5`) and large when the two points
# are not (e.g. between :math:`x=8.` and :math:`x=11`) or when the curvature
# of the function is large (between :math:`x=4` and :math:`x=6`).

plt.show()