1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
"""
Advanced Kriging
================
"""
# %%
#
# In this example we will build a metamodel using Gaussian process regression of the :math:`x\sin(x)` function.
#
# We will choose the number of learning points, the basis and the covariance model.
#
# %%
import openturns as ot
from openturns.viewer import View
import numpy as np
import matplotlib.pyplot as plt
import openturns.viewer as viewer
ot.Log.Show(ot.Log.NONE)
# %%
# Generate design of experiments
# ------------------------------
#
# We create training samples from the function :math:`x\sin(x)`. We can change their number and distribution in the :math:`[0; 10]` range.
# If the `with_error` boolean is `True`, then the data is computed by adding a Gaussian noise to the function values.
# %%
dim = 1
xmin = 0
xmax = 10
n_pt = 20 # number of initial points
with_error = True # whether to use generation with error
# %%
ref_func_with_error = ot.SymbolicFunction(["x", "eps"], ["x * sin(x) + eps"])
ref_func = ot.ParametricFunction(ref_func_with_error, [1], [0.0])
x = np.vstack(np.linspace(xmin, xmax, n_pt))
ot.RandomGenerator.SetSeed(1235)
eps = ot.Normal(0, 1.5).getSample(n_pt)
X = ot.Sample(n_pt, 2)
X[:, 0] = x
X[:, 1] = eps
if with_error:
y = np.array(ref_func_with_error(X))
else:
y = np.array(ref_func(x))
# %%
graph = ref_func.draw(xmin, xmax, 200)
cloud = ot.Cloud(x, y)
cloud.setColor("red")
cloud.setPointStyle("bullet")
graph.add(cloud)
graph.setLegends(["Function", "Data"])
graph.setLegendPosition("upper left")
graph.setTitle("Sample size = %d" % (n_pt))
view = viewer.View(graph)
# %%
# Create the Kriging algorithm
# ----------------------------
# 1. Basis
ot.ResourceMap.SetAsBool(
"GeneralLinearModelAlgorithm-UseAnalyticalAmplitudeEstimate", True
)
basis = ot.ConstantBasisFactory(dim).build()
print(basis)
# 2. Covariance model
cov = ot.MaternModel([1.0], [2.5], 1.5)
print(cov)
# 3. Kriging algorithm
algokriging = ot.KrigingAlgorithm(x, y, cov, basis)
# error measure
# algokriging.setNoise([5*1e-1]*n_pt)
# 4. Optimization
# algokriging.setOptimizationAlgorithm(ot.NLopt('GN_DIRECT'))
lhsExperiment = ot.LHSExperiment(ot.Uniform(1e-1, 1e2), 50)
algokriging.setOptimizationAlgorithm(ot.MultiStart(ot.TNC(), lhsExperiment.generate()))
algokriging.setOptimizationBounds(ot.Interval([0.1], [1e2]))
# if we choose not to optimize parameters
# algokriging.setOptimizeParameters(False)
# 5. Run the algorithm
algokriging.run()
# %%
# Results
# -------
# %%
# Get some results
krigingResult = algokriging.getResult()
print("residual = ", krigingResult.getResiduals())
print("R2 = ", krigingResult.getRelativeErrors())
print("Optimal scale= {}".format(krigingResult.getCovarianceModel().getScale()))
print(
"Optimal amplitude = {}".format(krigingResult.getCovarianceModel().getAmplitude())
)
print("Optimal trend coefficients = {}".format(krigingResult.getTrendCoefficients()))
# %%
# Get the metamodel
krigingMeta = krigingResult.getMetaModel()
n_pts_plot = 1000
x_plot = np.vstack(np.linspace(xmin, xmax, n_pts_plot))
fig, [ax1, ax2] = plt.subplots(1, 2, figsize=(12, 6))
# On the left, the function
graph = ref_func.draw(xmin, xmax, n_pts_plot)
graph.setLegends(["Function"])
graphKriging = krigingMeta.draw(xmin, xmax, n_pts_plot)
graphKriging.setColors(["green"])
graphKriging.setLegends(["Kriging"])
graph.add(graphKriging)
cloud = ot.Cloud(x, y)
cloud.setColor("red")
cloud.setLegend("Data")
graph.add(cloud)
graph.setLegendPosition("upper left")
View(graph, axes=[ax1])
# On the right, the conditional Kriging variance
graph = ot.Graph("", "x", "Conditional Kriging variance", True, "")
# Sample for the data
sample = ot.Sample(n_pt, 2)
sample[:, 0] = x
cloud = ot.Cloud(sample)
cloud.setColor("red")
graph.add(cloud)
# Sample for the variance
sample = ot.Sample(n_pts_plot, 2)
sample[:, 0] = x_plot
variance = [[krigingResult.getConditionalCovariance(xx)[0, 0]] for xx in x_plot]
sample[:, 1] = variance
curve = ot.Curve(sample)
curve.setColor("green")
graph.add(curve)
View(graph, axes=[ax2])
fig.suptitle("Kriging result")
# %%
# Display the confidence interval
# -------------------------------
level = 0.95
quantile = ot.Normal().computeQuantile((1 - level) / 2)[0]
borne_sup = krigingMeta(x_plot) + quantile * np.sqrt(variance)
borne_inf = krigingMeta(x_plot) - quantile * np.sqrt(variance)
fig, ax = plt.subplots(figsize=(8, 8))
ax.plot(x, y, ("ro"))
ax.plot(x_plot, borne_sup, "--", color="orange", label="Confidence interval")
ax.plot(x_plot, borne_inf, "--", color="orange")
graph_ref_func = ref_func.draw(xmin, xmax, n_pts_plot)
graph_krigingMeta = krigingMeta.draw(xmin, xmax, n_pts_plot)
for graph in [graph_ref_func, graph_krigingMeta]:
graph.setTitle("")
View(graph_ref_func, axes=[ax], plot_kw={"label": "$x sin(x)$"})
View(
graph_krigingMeta,
plot_kw={"color": "green", "label": "prediction"},
axes=[ax],
)
legend = ax.legend()
ax.autoscale()
# %%
# Generate conditional trajectories
# ---------------------------------
# %%
# Support for trajectories with training samples removed
values = np.linspace(0, 10, 500)
for xx in x:
if len(np.argwhere(values == xx)) == 1:
values = np.delete(values, np.argwhere(values == xx)[0, 0])
# %%
# Conditional Gaussian process
krv = ot.KrigingRandomVector(krigingResult, np.vstack(values))
krv_sample = krv.getSample(5)
# %%
x_plot = np.vstack(np.linspace(xmin, xmax, n_pts_plot))
fig, ax = plt.subplots(figsize=(8, 6))
ax.plot(x, y, ("ro"))
for i in range(krv_sample.getSize()):
if i == 0:
ax.plot(
values, krv_sample[i, :], "--", alpha=0.8, label="Conditional trajectories"
)
else:
ax.plot(values, krv_sample[i, :], "--", alpha=0.8)
View(
graph_ref_func,
axes=[ax],
plot_kw={"color": "black", "label": "$x*sin(x)$"},
)
View(
graph_krigingMeta,
axes=[ax],
plot_kw={"color": "green", "label": "prediction"},
)
legend = ax.legend()
ax.autoscale()
# %%
# Validation
# ----------
# %%
n_valid = 10
x_valid = ot.Uniform(xmin, xmax).getSample(n_valid)
X_valid = ot.Sample(x_valid)
if with_error:
X_valid.stack(ot.Normal(0.0, 1.5).getSample(n_valid))
y_valid = np.array(ref_func_with_error(X_valid))
else:
y_valid = np.array(ref_func(X_valid))
# %%
metamodelPredictions = krigingMeta(x_valid)
validation = ot.MetaModelValidation(y_valid, metamodelPredictions)
validation.computeR2Score()
# %%
graph = validation.drawValidation()
view = viewer.View(graph)
# %%
graph = validation.getResidualDistribution().drawPDF()
graph.setXTitle("Residuals")
view = viewer.View(graph)
# %%
# Nugget effect
# -------------
#
# Let us try again, but this time we optimize the nugget effect.
cov.activateNuggetFactor(True)
# %%
# We have to run the optimization algorithm again.
algokriging_nugget = ot.KrigingAlgorithm(x, y, cov, basis)
algokriging_nugget.setOptimizationAlgorithm(ot.NLopt("GN_DIRECT"))
algokriging_nugget.run()
# %%
# We get the results and the metamodel.
krigingResult_nugget = algokriging_nugget.getResult()
print("residual = ", krigingResult_nugget.getResiduals())
print("R2 = ", krigingResult_nugget.getRelativeErrors())
print("Optimal scale= {}".format(krigingResult_nugget.getCovarianceModel().getScale()))
print(
"Optimal amplitude = {}".format(
krigingResult_nugget.getCovarianceModel().getAmplitude()
)
)
print(
"Optimal trend coefficients = {}".format(
krigingResult_nugget.getTrendCoefficients()
)
)
# %%
krigingMeta_nugget = krigingResult_nugget.getMetaModel()
variance = [[krigingResult_nugget.getConditionalCovariance(xx)[0, 0]] for xx in x_plot]
# %%
# Plot the confidence interval again. Note that this time, it always contains
# the true value of the function.
# sphinx_gallery_thumbnail_number = 7
borne_sup_nugget = krigingMeta_nugget(x_plot) + quantile * np.sqrt(variance)
borne_inf_nugget = krigingMeta_nugget(x_plot) - quantile * np.sqrt(variance)
fig, ax = plt.subplots(figsize=(8, 8))
ax.plot(x, y, ("ro"))
ax.plot(
x_plot,
borne_sup_nugget,
"--",
color="orange",
label="Confidence interval with nugget",
)
ax.plot(x_plot, borne_inf_nugget, "--", color="orange")
graph_krigingMeta_nugget = krigingMeta_nugget.draw(xmin, xmax, n_pts_plot)
graph_krigingMeta_nugget.setTitle("")
View(graph_ref_func, axes=[ax], plot_kw={"label": "$x sin(x)$"})
View(
graph_krigingMeta_nugget,
plot_kw={"color": "green", "label": "prediction with nugget"},
axes=[ax],
)
View(
graph_krigingMeta,
plot_kw={
"color": "green",
"linestyle": "dotted",
"label": "prediction without nugget",
},
axes=[ax],
)
legend = ax.legend()
ax.autoscale()
plt.show()
# %%
# We validate the model with the nugget effect:
# its predictivity factor is slightly improved.
validation_nugget = ot.MetaModelValidation(y_valid, krigingMeta_nugget(x_valid))
print("R2 score with nugget: ", validation_nugget.computeR2Score())
print("R2 score without nugget: ", validation.computeR2Score())
# %%
# Reset default settings
ot.ResourceMap.Reload()
|