1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
|
"""
Kriging: metamodel with continuous and categorical variables
============================================================
"""
# %%
# We consider here the surrogate modeling of an analytical function characterized by
# continuous and categorical variables
#
# %%
import openturns as ot
import openturns.experimental as otexp
import numpy as np
import matplotlib.pyplot as plt
# Seed chosen in order to obtain a visually nice plot
ot.RandomGenerator.SetSeed(5)
# %%
# We first show the advantage of modeling the various levels of a mixed
# continuous / categorical function through a single surrogate model
# on a simple test-case taken from [pelamatti2020]_, defined below.
# %%
def illustrativeFunc(inp):
x, z = inp
y = np.cos(7 * x) + 0.5 * z
return [y]
dim = 2
fun = ot.PythonFunction(dim, 1, illustrativeFunc)
numberOfZLevels = 2 # Number of categorical levels for z
# Input distribution
dist = ot.JointDistribution(
[ot.Uniform(0, 1), ot.UserDefined(ot.Sample.BuildFromPoint(range(numberOfZLevels)))]
)
# %%
# In this example, we compare the performances of the :class:`~openturns.experimental.LatentVariableModel`
# with a naive approach, which would consist in modeling each combination of categorical
# variables through a separate and independent Gaussian process.
# %%
# In order to deal with mixed continuous / categorical problems we can rely on the
# :class:`~openturns.ProductCovarianceModel` class. We start here by defining the product kernel,
# which combines :class:`~openturns.SquaredExponential` kernels for the continuous variables, and
# :class:`~openturns.experimental.LatentVariableModel` for the categorical ones.
# %%
latDim = 1 # Dimension of the latent space
activeCoord = 1 + latDim * (
numberOfZLevels - 2
) # Nb of active coordinates in the latent space
kx = ot.SquaredExponential(1)
kz = otexp.LatentVariableModel(numberOfZLevels, latDim)
kLV = ot.ProductCovarianceModel([kx, kz])
kLV.setNuggetFactor(1e-6)
# Bounds for the hyperparameter optimization
lowerBoundLV = [1e-4] * dim + [-10.0] * activeCoord
upperBoundLV = [2.0] * dim + [10.0] * activeCoord
boundsLV = ot.Interval(lowerBoundLV, upperBoundLV)
# Distribution for the hyperparameters initialization
initDistLV = ot.DistributionCollection()
for i in range(len(lowerBoundLV)):
initDistLV.add(ot.Uniform(lowerBoundLV[i], upperBoundLV[i]))
initDistLV = ot.JointDistribution(initDistLV)
# %%
# As a reference, we consider a purely continuous kernel for independent Gaussian processes.
# One for each combination of categorical variables levels.
# %%
kIndependent = ot.SquaredExponential(1)
lowerBoundInd = [1e-4]
upperBoundInd = [20.0]
boundsInd = ot.Interval(lowerBoundInd, upperBoundInd)
initDistInd = ot.DistributionCollection()
for i in range(len(lowerBoundInd)):
initDistInd.add(ot.Uniform(lowerBoundInd[i], upperBoundInd[i]))
initDistInd = ot.JointDistribution(initDistInd)
initSampleInd = initDistInd.getSample(10)
optAlgInd = ot.MultiStart(ot.Cobyla(), initSampleInd)
# %%
# Generate the training data set
x = dist.getSample(10)
y = fun(x)
# And the plotting data set
xPlt = dist.getSample(200)
xPlt = xPlt.sort()
yPlt = fun(xPlt)
# %%
# Initialize and parameterize the optimization algorithm
initSampleLV = initDistLV.getSample(30)
optAlgLV = ot.MultiStart(ot.Cobyla(), initSampleLV)
# %%
# Create and train the Gaussian process models
basis = ot.ConstantBasisFactory(2).build()
algoLV = ot.KrigingAlgorithm(x, y, kLV, basis)
algoLV.setOptimizationAlgorithm(optAlgLV)
algoLV.setOptimizationBounds(boundsLV)
algoLV.run()
resLV = algoLV.getResult()
algoIndependentList = []
for z in range(2):
# Select the training samples corresponding to the correct combination
# of categorical levels
ind = np.where(np.all(np.array(x[:, 1]) == z, axis=1))[0]
xLoc = x[ind][:, 0]
yLoc = y[ind]
# Create and train the Gaussian process models
basis = ot.ConstantBasisFactory(1).build()
algoIndependent = ot.KrigingAlgorithm(xLoc, yLoc, kIndependent, basis)
algoIndependent.setOptimizationAlgorithm(optAlgInd)
algoIndependent.setOptimizationBounds(boundsInd)
algoIndependent.run()
algoIndependentList.append(algoIndependent.getResult())
# %%
# Plot the prediction of the mixed continuous / categorical GP,
# as well as the one of the two separate continuous GPs
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(15, 10))
for z in range(numberOfZLevels):
# Select the training samples corresponding to the correct combination
# of categorical levels
ind = np.where(np.all(np.array(x[:, 1]) == z, axis=1))[0]
xLoc = x[ind][:, 0]
yLoc = y[ind]
# Compute the models predictive performances on a validation data set.
# The predictions are computed independently for each level of z,
# i.e., by only considering the values of z corresponding to the
# target level.
ind = np.where(np.all(np.array(xPlt[:, 1]) == z, axis=1))[0]
xPltInd = xPlt[ind]
yPltInd = yPlt[ind]
predMeanLV = resLV.getConditionalMean(xPltInd)
predMeanInd = algoIndependentList[z].getConditionalMean(xPltInd[:, 0])
predSTDLV = np.sqrt(resLV.getConditionalMarginalVariance(xPltInd))
predSTDInd = np.sqrt(
algoIndependentList[z].getConditionalMarginalVariance(xPltInd[:, 0])
)
(trainingData,) = ax1.plot(xLoc[:, 0], yLoc, "r*")
(trueFunction,) = ax1.plot(xPltInd[:, 0], yPltInd, "k--")
(prediction,) = ax1.plot(xPltInd[:, 0], predMeanLV, "b-")
stdPred = ax1.fill_between(
xPltInd[:, 0].asPoint(),
(predMeanLV - predSTDLV).asPoint(),
(predMeanLV + predSTDLV).asPoint(),
alpha=0.5,
color="blue",
)
ax2.plot(xLoc[:, 0], yLoc, "r*")
ax2.plot(xPltInd[:, 0], yPltInd, "k--")
ax2.plot(xPltInd[:, 0], predMeanInd, "b-")
ax2.fill_between(
xPltInd[:, 0].asPoint(),
(predMeanInd - predSTDInd).asPoint(),
(predMeanInd + predSTDInd).asPoint(),
alpha=0.5,
color="blue",
)
ax1.legend(
[trainingData, trueFunction, prediction, stdPred],
["Training data", "True function", "Prediction", "Prediction standard deviation"],
)
ax1.set_title("Mixed continuous-categorical modeling")
ax2.set_title("Separate modeling")
ax2.set_xlabel("x", fontsize=15)
ax1.set_ylabel("y", fontsize=15)
ax2.set_ylabel("y", fontsize=15)
# %%
# It can be seen that the joint modeling of categorical and continuous variables
# improves the overall prediction accuracy, as the Gaussian process model is
# able to exploit the information provided by the entire training data set.
# %%
# We now consider a more complex function which is a modified version of the Goldstein function,
# taken from [pelamatti2020]_. This function depends on 2 continuous variables and 2 categorical ones.
# Each categorical variable is characterized by 3 levels.
# %%
def h(x1, x2, x3, x4):
y = (
53.3108
+ 0.184901 * x1
- 5.02914 * x1**3 * 1e-6
+ 7.72522 * x1**4 * 1e-8
- 0.0870775 * x2
- 0.106959 * x3
+ 7.98772 * x3**3 * 1e-6
+ 0.00242482 * x4
+ 1.32851 * x4**3 * 1e-6 * 0.00146393 * x1 * x2
- 0.00301588 * x1 * x3
- 0.00272291 * x1 * x4
+ 0.0017004 * x2 * x3
+ 0.0038428 * x2 * x4
- 0.000198969 * x3 * x4
+ 1.86025 * x1 * x2 * x3 * 1e-5
- 1.88719 * x1 * x2 * x4 * 1e-6
+ 2.50923 * x1 * x3 * x4 * 1e-5
- 5.62199 * x2 * x3 * x4 * 1e-5
)
return y
def Goldstein(inp):
x1, x2, z1, z2 = inp
x1 = 100 * x1
x2 = 100 * x2
if z1 == 0:
x3 = 80
elif z1 == 1:
x3 = 20
elif z1 == 2:
x3 = 50
else:
print("error, no matching category z1")
if z2 == 0:
x4 = 20
elif z2 == 1:
x4 = 80
elif z2 == 2:
x4 = 50
else:
print("error, no matching category z2")
return [h(x1, x2, x3, x4)]
dim = 4
fun = ot.PythonFunction(dim, 1, Goldstein)
numberOfZLevels1 = 3 # Number of categorical levels for z1
numberOfZLevels2 = 3 # Number of categorical levels for z2
# Input distribution
dist = ot.JointDistribution(
[
ot.Uniform(0, 1),
ot.Uniform(0, 1),
ot.UserDefined(ot.Sample.BuildFromPoint(range(numberOfZLevels1))),
ot.UserDefined(ot.Sample.BuildFromPoint(range(numberOfZLevels2))),
]
)
# %%
# As in the previous example, we start here by defining the product kernel,
# which combines :class:`~openturns.SquaredExponential` kernels for the continuous variables, and
# :class:`~openturns.experimental.LatentVariableModel` for the categorical ones.
# %%
latDim = 2 # Dimension of the latent space
activeCoord = (
2 + latDim * (numberOfZLevels1 - 2) + latDim * (numberOfZLevels2 - 2)
) # Nb ative coordinates in the latent space
kx1 = ot.SquaredExponential(1)
kx2 = ot.SquaredExponential(1)
kz1 = otexp.LatentVariableModel(numberOfZLevels1, latDim)
kz2 = otexp.LatentVariableModel(numberOfZLevels2, latDim)
kLV = ot.ProductCovarianceModel([kx1, kx2, kz1, kz2])
kLV.setNuggetFactor(1e-6)
# Bounds for the hyperparameter optimization
lowerBoundLV = [1e-4] * dim + [-10] * activeCoord
upperBoundLV = [3.0] * dim + [10.0] * activeCoord
boundsLV = ot.Interval(lowerBoundLV, upperBoundLV)
# Distribution for the hyperparameters initialization
initDistLV = ot.DistributionCollection()
for i in range(len(lowerBoundLV)):
initDistLV.add(ot.Uniform(lowerBoundLV[i], upperBoundLV[i]))
initDistLV = ot.JointDistribution(initDistLV)
# %%
# Alternatively, we consider a purely continuous kernel for independent Gaussian processes.
# one for each combination of categorical variables levels.
# %%
kIndependent = ot.SquaredExponential(2)
lowerBoundInd = [1e-4, 1e-4]
upperBoundInd = [3.0, 3.0]
boundsInd = ot.Interval(lowerBoundInd, upperBoundInd)
initDistInd = ot.DistributionCollection()
for i in range(len(lowerBoundInd)):
initDistInd.add(ot.Uniform(lowerBoundInd[i], upperBoundInd[i]))
initDistInd = ot.JointDistribution(initDistInd)
initSampleInd = initDistInd.getSample(10)
optAlgInd = ot.MultiStart(ot.Cobyla(), initSampleInd)
# %%
# In order to assess their respective robustness with regards to the training data set,
# we repeat the experiments 3 times with different training of size 72,
# and compute each time the normalized prediction Root Mean Squared Error (RMSE) on a
# test data set of size 1000.
rmseLVList = []
rmseIndList = []
for rep in range(3):
# Generate the normalized training data set
x = dist.getSample(72)
y = fun(x)
yMax = y.getMax()
yMin = y.getMin()
y = (y - yMin) / (yMin - yMax)
# Initialize and parameterize the optimization algorithm
initSampleLV = initDistLV.getSample(10)
optAlgLV = ot.MultiStart(ot.Cobyla(), initSampleLV)
# Create and train the Gaussian process models
basis = ot.ConstantBasisFactory(dim).build()
algoLV = ot.KrigingAlgorithm(x, y, kLV, basis)
algoLV.setOptimizationAlgorithm(optAlgLV)
algoLV.setOptimizationBounds(boundsLV)
algoLV.run()
resLV = algoLV.getResult()
# Compute the models predictive performances on a validation data set
xVal = dist.getSample(1000)
yVal = fun(xVal)
yVal = (yVal - yMin) / (yMin - yMax)
valLV = ot.MetaModelValidation(yVal, resLV.getMetaModel()(xVal))
rmseLV = valLV.getResidualSample().computeStandardDeviation()[0]
rmseLVList.append(rmseLV)
error = ot.Sample(0, 1)
for z1 in range(numberOfZLevels1):
for z2 in range(numberOfZLevels2):
# Select the training samples corresponding to the correct combination
# of categorical levels
ind = np.where(np.all(np.array(x[:, 2:]) == [z1, z2], axis=1))[0]
xLoc = x[ind][:, :2]
yLoc = y[ind]
# Create and train the Gaussian process models
basis = ot.ConstantBasisFactory(2).build()
algoIndependent = ot.KrigingAlgorithm(xLoc, yLoc, kIndependent, basis)
algoIndependent.setOptimizationAlgorithm(optAlgInd)
algoIndependent.setOptimizationBounds(boundsInd)
algoIndependent.run()
resInd = algoIndependent.getResult()
# Compute the models predictive performances on a validation data set
ind = np.where(np.all(np.array(xVal[:, 2:]) == [z1, z2], axis=1))[0]
xValInd = xVal[ind][:, :2]
yValInd = yVal[ind]
valInd = ot.MetaModelValidation(yValInd, resInd.getMetaModel()(xValInd))
error.add(valInd.getResidualSample())
rmseInd = error.computeStandardDeviation()[0]
rmseIndList.append(rmseInd)
plt.figure()
plt.boxplot([rmseLVList, rmseIndList])
plt.xticks([1, 2], ["Mixed continuous-categorical GP", "Independent GPs"])
plt.ylabel("RMSE")
# %%
# The obtained results show, for this test-case, a better modeling performance
# when modeling the function as a mixed categorical/continuous function, rather
# than relying on multiple purely continuous Gaussian processes.
|