1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
|
"""
Polynomial chaos expansion cross-validation
===========================================
"""
# %%
# Introduction
# ------------
#
# In this example, we show how to perform the cross-validation of the
# :ref:`Ishigami model<use-case-ishigami>` using polynomial chaos expansion.
# More precisely, we use the methods suggested in [muller2016]_, chapter 5, page 257.
# We make the assumption that a dataset is given and we create a metamodel using this data.
# Once done, we want to assess the quality of the metamodel using the data we have.
# Another example of this method is presented in
# :doc:`/auto_numerical_methods/general_methods/plot_pce_design`.
#
# In this example, we compare two methods:
#
# - split the data into two subsets, one for training and one for testing,
# - use k-fold validation.
#
# The split of the data is performed by the `compute_R2_score_by_splitting` function below.
# It uses 75% of the data to estimate the coefficients of the metamodel (this is the training step)
# and use 25% of the data to estimate the :math:`R^2` score (this is the validation step).
# To do this, we use the `split` method of the :class:`~openturns.Sample`.
#
# The K-Fold validation is performed by the `compute_R2_score_by_kfold` function below.
# It uses the K-Fold method with :math:`k = 5`.
# The code uses the :class:`~openturns.KFoldSplitter` class, which computes the appropriate indices.
# Similar results can be obtained with :class:`~openturns.LeaveOneOutSplitter` at a higher cost.
# This cross-validation method is used here to see which polynomial degree
# leads to an accurate metamodel of the Ishigami test function.
# %%
import openturns as ot
import openturns.viewer as otv
from openturns.usecases import ishigami_function
# %%
# Define helper functions
# -----------------------
# %%
# The next function creates a polynomial chaos expansion from
# a training data set and a total degree.
# %%
def compute_sparse_least_squares_chaos(
inputTrain, outputTrain, multivariateBasis, totalDegree, distribution
):
"""
Create a sparse polynomial chaos based on least squares.
* Uses the enumerate rule in multivariateBasis.
* Uses the LeastSquaresStrategy to compute the coefficients based on
least squares.
* Uses LeastSquaresMetaModelSelectionFactory to use the LARS selection method.
* Uses FixedStrategy in order to keep all the coefficients that the
LARS method selected.
Parameters
----------
inputTrain : Sample
The input design of experiments.
outputTrain : Sample
The output design of experiments.
multivariateBasis : multivariateBasis
The multivariate chaos multivariateBasis.
totalDegree : int
The total degree of the chaos polynomial.
distribution : Distribution.
The distribution of the input variable.
Returns
-------
result : PolynomialChaosResult
The estimated polynomial chaos.
"""
selectionAlgorithm = ot.LeastSquaresMetaModelSelectionFactory()
projectionStrategy = ot.LeastSquaresStrategy(
inputTrain, outputTrain, selectionAlgorithm
)
enumerateFunction = multivariateBasis.getEnumerateFunction()
multivariateBasisSize = enumerateFunction.getBasisSizeFromTotalDegree(totalDegree)
adaptiveStrategy = ot.FixedStrategy(multivariateBasis, multivariateBasisSize)
chaosAlgo = ot.FunctionalChaosAlgorithm(
inputTrain, outputTrain, distribution, adaptiveStrategy, projectionStrategy
)
chaosAlgo.run()
result = chaosAlgo.getResult()
return result
# %%
# The next function computes the :math:`R^2` score by splitting the data set
# into a training set and a test set.
# %%
def compute_R2_score_by_splitting(
inputSample,
outputSample,
multivariateBasis,
totalDegree,
distribution,
split_fraction=0.75,
):
"""
Compute R2 score by splitting into train/test sets.
Parameters
----------
inputSample : Sample(size, input_dimension)
The X dataset.
outputSample : Sample(size, output_dimension)
The Y dataset.
multivariateBasis : multivariateBasis
The multivariate chaos multivariateBasis.
totalDegree : int
The total degree of the chaos polynomial.
distribution : Distribution.
The distribution of the input variable.
split_fraction : float, in (0, 1)
The proportion of the sample used in the training.
Returns
-------
r2Score : float
The R2 score.
"""
training_sample_size = inputSample.getSize()
inputSampleTrain = ot.Sample(inputSample) # Make a copy
outputSampleTrain = ot.Sample(outputSample)
split_index = int(split_fraction * training_sample_size)
inputSampleTest = inputSampleTrain.split(split_index)
outputSampleTest = outputSampleTrain.split(split_index)
chaosResult = compute_sparse_least_squares_chaos(
inputSampleTrain,
outputSampleTrain,
multivariateBasis,
totalDegree,
distribution,
)
metamodel = chaosResult.getMetaModel()
metamodelPredictions = metamodel(inputSampleTest)
val = ot.MetaModelValidation(outputSampleTest, metamodelPredictions)
r2Score = val.computeR2Score()
return r2Score
# %%
# The next function computes the mean squared error by K-Fold.
# %%
def computeMSENaiveKFold(
inputSample,
outputSample,
multivariateBasis,
totalDegree,
distribution,
kParameter=5,
):
"""
Compute mean squared error by (naive) KFold.
Parameters
----------
inputSample : Sample(size, input_dimension)
The inputSample dataset.
outputSample : Sample(size, output_dimension)
The outputSample dataset.
multivariateBasis : multivariateBasis
The multivariate chaos multivariateBasis.
totalDegree : int
The total degree of the chaos polynomial.
distribution : Distribution.
The distribution of the input variable.
kParameter : int, in (2, sampleSize)
The parameter K.
Returns
-------
mse : Point(output_dimension)
The mean squared error.
"""
#
sampleSize = inputSample.getSize()
outputDimension = outputSample.getDimension()
splitter = ot.KFoldSplitter(sampleSize, kParameter)
squaredResiduals = ot.Sample(sampleSize, outputDimension)
for indicesTrain, indicesTest in splitter:
inputSampleTrain, inputSampleTest = (
inputSample[indicesTrain],
inputSample[indicesTest],
)
outputSampleTrain, outputSampleTest = (
outputSample[indicesTrain],
outputSample[indicesTest],
)
chaosResultKFold = compute_sparse_least_squares_chaos(
inputSampleTrain,
outputSampleTrain,
multivariateBasis,
totalDegree,
distribution,
)
metamodelKFold = chaosResultKFold.getMetaModel()
predictionsKFold = metamodelKFold(inputSampleTest)
residualsKFold = outputSampleTest - predictionsKFold
foldSize = indicesTest.getSize()
for j in range(outputDimension):
for i in range(foldSize):
squaredResiduals[indicesTest[i], j] = residualsKFold[i, j] ** 2
mse = squaredResiduals.computeMean()
return mse
# %%
# The next function computes the :math:`R^2` score by K-Fold.
def compute_R2_score_by_kfold(
inputSample,
outputSample,
multivariateBasis,
totalDegree,
distribution,
kParameter=5,
):
"""
Compute R2 score by KFold.
Parameters
----------
inputSample : Sample(size, input_dimension)
The X dataset.
outputSample : Sample(size, output_dimension)
The Y dataset.
multivariateBasis : multivariateBasis
The multivariate chaos multivariateBasis.
totalDegree : int
The total degree of the chaos polynomial.
distribution : Distribution.
The distribution of the input variable.
kParameter : int
The parameter K.
Returns
-------
r2Score : float
The R2 score.
"""
#
mse = computeMSENaiveKFold(
inputSample,
outputSample,
multivariateBasis,
totalDegree,
distribution,
kParameter,
)
sampleVariance = outputSample.computeCentralMoment(2)
outputDimension = outputSample.getDimension()
r2Score = ot.Point(outputDimension)
for i in range(outputDimension):
r2Score[i] = 1.0 - mse[i] / sampleVariance[i]
return r2Score
"""
Compute mean squared error by (naive) KFold.
Parameters
----------
inputSample : Sample(size, input_dimension)
The inputSample dataset.
outputSample : Sample(size, output_dimension)
The outputSample dataset.
multivariateBasis : multivariateBasis
The multivariate chaos multivariateBasis.
totalDegree : int
The total degree of the chaos polynomial.
distribution : Distribution.
The distribution of the input variable.
kParameter : int, in (2, sampleSize)
The parameter K.
Returns
-------
mse : Point(output_dimension)
The mean squared error.
"""
#
sampleSize = inputSample.getSize()
outputDimension = outputSample.getDimension()
splitter = ot.KFoldSplitter(sampleSize, kParameter)
squaredResiduals = ot.Sample(sampleSize, outputDimension)
for indicesTrain, indicesTest in splitter:
inputSampleTrain, inputSampleTest = (
inputSample[indicesTrain],
inputSample[indicesTest],
)
outputSampleTrain, outputSampleTest = (
outputSample[indicesTrain],
outputSample[indicesTest],
)
chaosResultKFold = compute_sparse_least_squares_chaos(
inputSampleTrain,
outputSampleTrain,
multivariateBasis,
totalDegree,
distribution,
)
metamodelKFold = chaosResultKFold.getMetaModel()
predictionsKFold = metamodelKFold(inputSampleTest)
residualsKFold = outputSampleTest - predictionsKFold
foldSize = indicesTest.getSize()
for j in range(outputDimension):
for i in range(foldSize):
squaredResiduals[indicesTest[i], j] = residualsKFold[i, j] ** 2
mse = squaredResiduals.computeMean()
return mse
# %%
# Define the training data set
# ----------------------------
# %%
# We start by generating the input and output samples. We use a sample size equal to 1000.
# %%
im = ishigami_function.IshigamiModel()
im.inputDistribution.setDescription(["X0", "X1", "X2"])
im.model.setOutputDescription(["$Y$"])
ot.RandomGenerator.SetSeed(0)
sample_size = 500
X = im.inputDistribution.getSample(sample_size)
print("Input sample:")
X[:5]
# %%
Y = im.model(X)
Y.setDescription(["Y"])
print("Output sample:")
Y[:5]
# %%
# We compute a polynomial chaos decomposition with a total degree equal to 5.
# In order to reduce the number of coefficients, the `compute_sparse_least_squares_chaos`
# function creates a sparse chaos using regression and the LARS method.
# %%
dimension = im.inputDistribution.getDimension()
multivariateBasis = ot.OrthogonalProductPolynomialFactory(
[im.inputDistribution.getMarginal(i) for i in range(dimension)]
)
totalDegree = 5 # Polynomial degree
result = compute_sparse_least_squares_chaos(
X, Y, multivariateBasis, totalDegree, im.inputDistribution
)
result
# %%
# Get the metamodel.
# %%
metamodel = result.getMetaModel()
# %%
# Validate the metamodel from a test set
# --------------------------------------
# %%
# In order to validate our polynomial chaos, we generate an extra pair of
# input / output samples and use the :class:`~openturns.MetaModelValidation` class.
test_sample_size = 200 # Size of the validation design of experiments
inputTest = im.inputDistribution.getSample(test_sample_size)
outputTest = im.model(inputTest)
metamodelPredictions = metamodel(inputTest)
validation = ot.MetaModelValidation(outputTest, metamodelPredictions)
r2Score = validation.computeR2Score()[0]
graph = validation.drawValidation()
graph.setTitle("R2=%.2f, n=%d" % (r2Score, test_sample_size))
view = otv.View(graph)
# %%
# The plot shows that the score is relatively high and might be satisfactory for some purposes.
# There are however several issues with the previous procedure:
#
# - It may happen that the data in the validation sample with size 200 is more
# difficult to fit than the data in the training dataset.
# In this case, the :math:`R^2` score may be pessimistic.
# - It may happen that the data in the validation sample with size 200 is
# less difficult to fit than the data in the validation dataset.
# In this case, the :math:`R^2` score may be optimistic.
# - We may not be able to generate an extra dataset for validation.
# In this case, a part of the original dataset should be used for validation.
# - The polynomial degree may not be appropriate for this data.
# - The dataset may be ordered in some way, so that the split is somewhat arbitrary.
# One solution to circumvent this is to randomly shuffle the data.
# This can be done using the :class:`~openturns.KPermutationsDistribution`.
#
# The K-Fold validation aims at solving some of these issues, so that all the
# available data is used in order to estimate the :math:`R^2` score.
# %%
# Compute the R2 score from a test set
# ------------------------------------
# %%
# In the following script, we compute the :math:`R^2` score associated with each polynomial degree from 1 to 10.
split_fraction = 0.75
print(f"Split cross-validation, with {100 * split_fraction:.0f}% for training")
degree_max = 10
degree_list = list(range(1, 1 + degree_max))
n_degrees = len(degree_list)
scoreSampleSplit = ot.Sample(len(degree_list), 1)
for i in range(n_degrees):
totalDegree = degree_list[i]
scoreSampleSplit[i] = compute_R2_score_by_splitting(
X, Y, multivariateBasis, totalDegree, im.inputDistribution, split_fraction
)
print(f"Degree = {totalDegree}, score = {scoreSampleSplit[i, 0]:.4f}")
# %%
graph = ot.Graph(
f"Split CV, {100 * split_fraction:.0f}% for training", "Degree", "$R^2$", True
)
cloud = ot.Cloud(ot.Sample.BuildFromPoint(degree_list), scoreSampleSplit)
cloud.setPointStyle("circle")
graph.add(cloud)
boundingBox = ot.Interval([0.0, 0.0], [1 + degree_max, 1.1])
graph.setBoundingBox(boundingBox)
view = otv.View(graph, figure_kw={"figsize": (5.0, 4.0)})
# %%
# We see that the polynomial degree may be increased up to degree 7,
# after which the :math:`R^2` score does not increase much.
# %%
# Compute the R2 score from K-Fold cross-validation
# -------------------------------------------------
#
# One limitation of the previous method is that the estimate of the
# :math:`R^2` may be sensitive to the particular split of the dataset.
# The following script uses 5-Fold cross validation to estimate the
# :math:`R^2` score.
# %%
kParameter = 5
print(f"{kParameter}-Fold cross-validation")
scoreSampleKFold = ot.Sample(len(degree_list), 1)
for i in range(n_degrees):
totalDegree = degree_list[i]
scoreSampleKFold[i] = compute_R2_score_by_kfold(
X, Y, multivariateBasis, totalDegree, im.inputDistribution, kParameter
)
print(f"Degree = {totalDegree}, score = {scoreSampleKFold[i, 0]:.4f}")
# %%
graph = ot.Graph(f"{kParameter}-Fold cross-validation", "Degree", "$R^2$", True)
cloud = ot.Cloud(ot.Sample.BuildFromPoint(degree_list), scoreSampleKFold)
cloud.setPointStyle("square")
graph.add(cloud)
graph.setBoundingBox(boundingBox)
view = otv.View(graph, figure_kw={"figsize": (5.0, 4.0)})
# %%
# The conclusion is similar to the previous method.
# %%
# Compare the two cross-validation methods.
graph = ot.Graph("CV : split vs K-Fold", "Degree", "$R^2$", True)
cloud = ot.Cloud(ot.Sample.BuildFromPoint(degree_list), scoreSampleSplit)
cloud.setPointStyle("circle")
cloud.setLegend("Split")
graph.add(cloud)
cloud = ot.Cloud(ot.Sample.BuildFromPoint(degree_list), scoreSampleKFold)
cloud.setPointStyle("square")
cloud.setLegend("K-Fold")
graph.add(cloud)
graph.setLegendPosition("topleft")
graph.setBoundingBox(boundingBox)
view = otv.View(graph, figure_kw={"figsize": (5.0, 4.0)})
# sphinx_gallery_thumbnail_number = 4
# %%
# Conclusion
# ----------
#
# When we select the best polynomial degree which maximizes the :math:`R^2` score,
# the danger is that the validation set is used both for computing the :math:`R^2` and to maximize it:
# hence, the :math:`R^2` score may be optimistic.
# In [muller2016]_, chapter 5, page 269, the authors advocate the split of the dataset into three subsets:
#
# - the training set,
# - the validation set,
# - the test set.
#
# When selecting the best parameters, the validation set is used.
# When estimating the :math:`R^2` score with the best parameters, the test set is used.
# %%
otv.View.ShowAll()
|