1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
"""
Create a polynomial chaos metamodel from a data set
===================================================
"""
# %%
# In this example, we create a polynomial chaos expansion (PCE) using
# a data set.
# More precisely, given a pair of input and output samples,
# we create a PCE without the knowledge of the input distribution.
# In this example, we use a relatively small sample size equal to 80.
# %%
# In this example we create a global approximation of a model response using
# polynomial chaos expansion.
#
# Let :math:`\vect{g}` be the function defined by:
#
# .. math::
# \vect{g}(\vect{x}) = \Tr{\left(\cos(x_1 + x_2), (x_2 + 1) e^{x_1}\right)}
#
#
# for any :math:`\vect{x} \in \Rset^2`.
#
# We assume that
#
# .. math::
# X_1 \sim \mathcal{N}(0,1) \textrm{ and } X_2 \sim \mathcal{N}(0,1)
#
# and that :math:`X_1` and :math:`X_2` are independent.
#
# An interesting point in this example is that the output is multivariate.
# This is why we are going to use the `getMarginal` method in the script
# in order to select the output marginal that we want to manage.
# %%
# Simulate input and output samples
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# %%
import openturns as ot
import openturns.viewer as viewer
from matplotlib import pylab as plt
ot.Log.Show(ot.Log.NONE)
# %%
# We first create the function `model`.
# %%
ot.RandomGenerator.SetSeed(0)
input_names = ["x1", "x2"]
formulas = ["cos(x1 + x2)", "(x2 + 1) * exp(x1)"]
model = ot.SymbolicFunction(input_names, formulas)
inputDimension = model.getInputDimension()
outputDimension = model.getOutputDimension()
# %%
# Then we create a sample `inputSample` and compute the corresponding output
# sample `outputSample`.
# %%
distribution = ot.Normal(inputDimension)
samplesize = 80
inputSample = distribution.getSample(samplesize)
outputSample = model(inputSample)
# %%
# Create the PCE
# ~~~~~~~~~~~~~~
# %%
# Create a functional chaos model.
# The algorithm needs to fit a distribution on the input sample.
# To do this, the algorithm in :class:`~openturns.FunctionalChaosAlgorithm`
# uses the :class:`~openturns.FunctionalChaosAlgorithm.BuildDistribution`
# static method to fit the distribution to the input sample.
# Please read :doc:`Fit a distribution from an input sample </auto_meta_modeling/polynomial_chaos_metamodel/plot_chaos_build_distribution>`
# for an example of this method.
# The algorithm does this automatically using the Lilliefors test.
# In order to make the algorithm a little faster, we reduce the
# value of the sample size used in the Lilliefors test.
# %%
ot.ResourceMap.SetAsUnsignedInteger("FittingTest-LillieforsMaximumSamplingSize", 50)
# %%
# The main topic of this example is to introduce the next constructor of
# :class:`~openturns.FunctionalChaosAlgorithm`.
# Notice that the only input arguments are the input and output samples.
algo = ot.FunctionalChaosAlgorithm(inputSample, outputSample)
algo.run()
result = algo.getResult()
result
# %%
# Not all coefficients are selected in this PCE.
# Indeed, the default constructor of :class:`~openturns.FunctionalChaosAlgorithm`
# creates a sparse PCE.
# Please read :doc:`Create a full or sparse polynomial chaos expansion </auto_meta_modeling/polynomial_chaos_metamodel/plot_functional_chaos_database>`
# for more details on this topic.
# %%
# Get the metamodel.
metamodel = result.getMetaModel()
# %%
# Plot the second output of our model depending on :math:`x_2` with :math:`x_1=0.5`.
# In order to do this, we create a `ParametricFunction` and set the value of :math:`x_1`.
# Then we use the `getMarginal` method to extract the second output (which index is equal to 1).
# %%
x1index = 0
x1value = 0.5
x2min = -3.0
x2max = 3.0
outputIndex = 1
metamodelParametric = ot.ParametricFunction(metamodel, [x1index], [x1value])
graph = metamodelParametric.getMarginal(outputIndex).draw(x2min, x2max)
graph.setLegends(["Metamodel"])
modelParametric = ot.ParametricFunction(model, [x1index], [x1value])
curve = modelParametric.getMarginal(outputIndex).draw(x2min, x2max).getDrawable(0)
curve.setColor("red")
curve.setLegend("Model")
graph.add(curve)
graph.setLegendPosition("lower right")
graph.setXTitle("X2")
graph.setTitle("Metamodel Validation, output #%d" % (outputIndex))
view = viewer.View(graph)
# %%
# We see that the metamodel fits approximately to the model, except
# perhaps for extreme values of :math:`x_2`.
# However, there is a better way of globally validating the metamodel,
# using the :class:`~openturns.MetaModelValidation` on a validation design of experiments.
# %%
n_valid = 100
inputTest = distribution.getSample(n_valid)
outputTest = model(inputTest)
# %%
# Plot the corresponding validation graphics.
# %%
metamodelPredictions = metamodel(inputTest)
val = ot.MetaModelValidation(outputTest, metamodelPredictions)
r2Score = val.computeR2Score()
graph = val.drawValidation()
graph.setTitle("Metamodel validation R2=" + str(r2Score))
view = viewer.View(graph)
# %%
# The coefficient of determination is not extremely satisfactory for the
# first output, but is would be sufficient for a central dispersion study.
# The second output has a much more satisfactory :math:`R^2`: only one single
# extreme point is far from the diagonal of the graphics.
# %%
# Compute and print Sobol' indices
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# %%
chaosSI = ot.FunctionalChaosSobolIndices(result)
chaosSI
# %%
# Let us analyze the results of this global sensitivity analysis.
#
# * We see that the first output involves significant multi-indices with
# higher marginal degree.
# * For the second output, the first variable is especially significant,
# with a significant contribution of the interactions.
# The contribution of the interactions are very
# significant in this model.
# %%
# Draw Sobol' indices.
# %%
sensitivityAnalysis = ot.FunctionalChaosSobolIndices(result)
first_order = [sensitivityAnalysis.getSobolIndex(i) for i in range(inputDimension)]
total_order = [sensitivityAnalysis.getSobolTotalIndex(i) for i in range(inputDimension)]
# %%
input_names = model.getInputDescription()
graph = ot.SobolIndicesAlgorithm.DrawSobolIndices(input_names, first_order, total_order)
graph.setLegendPosition("center")
view = viewer.View(graph)
# %%
# Testing the sensitivity to the degree
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# With the specific constructor of :class:`~openturns.FunctionalChaosAlgorithm` that
# we use, the `FunctionalChaosAlgorithm-MaximumTotalDegree`
# in the `ResourceMap` configures the maximum degree explored by
# the algorithm. This degree is a trade-off.
#
# * If the maximum degree is too low, the polynomial may miss some
# coefficients so that the quality is lower than possible.
# * If the maximum degree is too large, the number of coefficients
# to explore is too large, so that the coefficients might be poorly estimated.
#
# This is why the following `for` loop explores various degrees to see
# the sensitivity of the metamodel predictivity depending on the degree.
# %%
# The default value of this parameter is 10.
# %%
ot.ResourceMap.GetAsUnsignedInteger("FunctionalChaosAlgorithm-MaximumTotalDegree")
# %%
# This is why we explore the values from 1 to 10.
# %%
maximumDegree = 11
degrees = range(1, maximumDegree)
r2Score = ot.Sample(len(degrees), outputDimension)
for maximumDegree in degrees:
ot.ResourceMap.SetAsUnsignedInteger(
"FunctionalChaosAlgorithm-MaximumTotalDegree", maximumDegree
)
print("Maximum total degree =", maximumDegree)
algo = ot.FunctionalChaosAlgorithm(inputSample, outputSample)
algo.run()
result = algo.getResult()
metamodel = result.getMetaModel()
metamodelPredictions = metamodel(inputTest)
val = ot.MetaModelValidation(outputTest, metamodelPredictions)
r2ScoreLocal = val.computeR2Score()
r2ScoreLocal = [max(0.0, r2ScoreLocal[i]) for i in range(outputDimension)]
r2Score[maximumDegree - degrees[0]] = r2ScoreLocal
# %%
graph = ot.Graph("Predictivity", "Total degree", "R2", True)
cloud = ot.Cloud([[d] for d in degrees], r2Score[:, 0])
cloud.setLegend("Output #0")
cloud.setPointStyle("bullet")
graph.add(cloud)
cloud = ot.Cloud([[d] for d in degrees], r2Score[:, 1])
cloud.setLegend("Output #1")
cloud.setPointStyle("diamond")
graph.add(cloud)
graph.setLegendPosition("upper left")
graph.setLegendCorner([1.0, 1.0])
view = viewer.View(graph)
plt.subplots_adjust(right=0.7)
plt.show()
# %%
# We see that a low total degree is not sufficient to describe the
# first output with good :math:`R^2` score.
# However, the coefficient of determination can drop when the total degree increases.
# The :math:`R^2` score of the second output seems to be much less satisfactory:
# a little more work would be required to improve the metamodel.
#
# In this situation, the following methods may be used.
#
# * Since the distribution of the input is known, we may want to give
# this information to the :class:`~openturns.FunctionalChaosAlgorithm`.
# This prevents the algorithm from trying to fit the input distribution
# which best fit to the data.
# * We may want to customize the `adaptiveStrategy` by selecting an enumerate
# function which best fit to this particular example.
# In this specific example, however, the interactions plays a great role so that the
# linear enumerate function may provide better results than the hyperbolic rule.
# * We may want to customize the `projectionStrategy` by selecting a method
# to compute the coefficient which improves the estimation.
# For example, it might be interesting to
# try an integration rule instead of the least squares method.
# Notice that a specific design of experiments is required in this case.
# %%
# Reset default settings
ot.ResourceMap.Reload()
|