File: KarhunenLoeveSVDAlgorithm.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (21 lines) | stat: -rw-r--r-- 723 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View

mesh = ot.IntervalMesher([128]).build(ot.Interval(-1.0, 1.0))
threshold = 0.001
model = ot.AbsoluteExponential([1.0])
sample = ot.GaussianProcess(model, mesh).getSample(100)
algo = ot.KarhunenLoeveSVDAlgorithm(sample, threshold)
algo.run()
ev = algo.getResult().getEigenvalues()
modes = algo.getResult().getScaledModesAsProcessSample()
g = modes.drawMarginal(0)
g.setXTitle(r"$t$")
g.setYTitle(r"$\sqrt{\lambda_n}\phi_n$")
g.setTitle(r"SVD approx. of KL expansion for $C(s,t)=e^{-|s-t|}$")

fig = plt.figure(figsize=(6, 4))
axis = fig.add_subplot(111)
axis.set_xlim(auto=True)
View(g, figure=fig, axes=[axis], add_legend=False)