1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
|
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
model = ot.SymbolicFunction(["E", "F", "L", "I"], ["F*L^3/(3*E*I)"])
# distribution
# Young's modulus E
E = ot.Beta(0.9, 3.5, 2.5e7, 5.0e7) # in N/m^2
E.setDescription("E")
# Load F
F = ot.LogNormal() # in N
F.setParameter(ot.LogNormalMuSigma()([30.0e3, 9e3, 15.0e3]))
F.setDescription("F")
# Length L
L = ot.Uniform(250.0, 260.0) # in cm
L.setDescription("L")
# Moment of inertia I
II = ot.Beta(2.5, 4, 310, 450) # in cm^4
II.setDescription("I")
distribution = ot.JointDistribution([E, F, L, II])
# estimator
estimator = ot.SaltelliSensitivityAlgorithm()
estimator.setUseAsymptoticDistribution(True)
# algorithm
algo = ot.SobolSimulationAlgorithm(distribution, model, estimator)
algo.setMaximumOuterSampling(250) # number of iterations
algo.setExperimentSize(100)
algo.setBlockSize(4)
# alpha: criteria checks whether CIs are small enough
algo.setIndexQuantileLevel(0.05)
# epsilon: criteria checks whether CIs are tight enough
algo.setIndexQuantileEpsilon(1e-2)
algo.run()
graph = algo.drawFirstOrderIndexConvergence(0)
fig = plt.figure(figsize=(8, 4))
axis = fig.add_subplot(111)
axis.set_xlim(auto=True)
View(graph, figure=fig, axes=[axis], add_legend=True)
|