1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
|
.. _kernel_smoothing:
Kernel smoothing
----------------
Kernel smoothing is a non parametric estimation method of the probability density function of a distribution.
Introduction
~~~~~~~~~~~~
Let :math:`X` be a random variable with probability density function :math:`p`.
Given a sample of independent observations :math:`x_1, ..., x_n` of :math:`X`
and any point :math:`x \in \Rset`, the kernel smoothing estimator provides
an approximation :math:`\widehat{p}(x)` of :math:`p(x)`.
In dimension 1, the kernel smoothed probability density function :math:`\widehat{p}` has the following expression,
where *K* is the univariate kernel, *n* the sample size and :math:`(X_1, \cdots, X_n) \in \Rset^n`
the univariate random sample with :math:`\forall i, \, \, X_i \in \Rset` ([wand1994]_ eq. 2.2 page 12):
.. math::
:label: kernelSmooth
\widehat{p}(x) = \frac{1}{nh}\sum_{i=1}^{n} K\left(\frac{x-X_i}{h}\right)
The kernel *K* is a function satisfying:
.. math::
\int K(x)\, dx=1.
The parameter *h* is called the *bandwidth*.
Multivariate kernels
~~~~~~~~~~~~~~~~~~~~
In dimension :math:`d>1`, the kernel may be defined as a product kernel :math:`K_d`,
as follows where :math:`\vect{x} = (x_1, \cdots, x_d)\in \Rset^d`
([wand1994]_ eq. 2.2 page 91):
.. math::
K_d(\vect{x}) = \prod_{j=1}^{d} K(x_j).
The kernel smoothed probability density function in dimension *d* is:
.. math::
\widehat{p}(\vect{x})
= \frac{1}{n \prod_{j=1}^{d}h_j} \sum_{i=1}^{n} K_d\left(\frac{x_1 - (X_{i})_1 }{h_1}, \dots, \frac{x_d - (X_{i})_d}{h_d}\right)
where :math:`(\vect{X}_1, \cdots, \vect{X}_n)` is the d-variate random sample
which components are denoted :math:`\vect{X}_i = (X_{i1}, \dots, X_{id})`.
In the multivariate case, the bandwidth is the vector
:math:`\vect{h} = (h_1, \cdots, h_d)`.
Asymptotic error and asymptotically optimal bandwidth
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The quality of the approximation may be controlled by the AMISE (Asymptotic Mean Integrated Square error) criteria defined as follows.
By definition, the mean squared error (MSE) at point :math:`\vect{x}` is
(see [scott2015]_ eq. page 40, [wand1994]_ pages 14-21):
.. math::
\operatorname{MSE}(\widehat{p}, \vect{x})
= \mathbb{E}_\vect{X}\left[\left(\widehat{p}(\vect{x}) - p(\vect{x})\right)^2 \right].
It can be proved that the mean squared error is the sum of the
variance and the squared bias:
.. math::
\operatorname{MSE}(\widehat{p}, \vect{x})
= \operatorname{Var}_\vect{X}\left[\widehat{p}(\vect{x})\right]
+ \left(\operatorname{Bias}\left(\widehat{p}(\vect{x})\right)\right)^2
where the bias is:
.. math::
\operatorname{Bias}\left(\widehat{p}(\vect{x})\right)
= \mathbb{E}_\vect{X}\left[\widehat{p}(\vect{x})\right] - p(\vect{x}).
The MSE depends on the point where the density is evaluated.
The mean integrated squared error (MISE) is (see [scott2015]_ eq. page 41):
.. math::
\operatorname{MISE}(\widehat{p})
= \mathbb{E}_\vect{X}\left[||\widehat{p} - p||^2_{L_2}\right] = \int \, \operatorname{MSE}(\widehat{p}, \vect{x}) \, d\vect{x} \\
Finally, the asymptotic mean integrated squared error (AMISE),
denoted :math:`\operatorname{AMISE}(\widehat{p})` is defined as the two first terms
in the Taylor series expansion of :math:`\operatorname{MISE}(\widehat{p})` when :math:`n`
tends to infinity.
The quality of the estimation essentially depends on the value of the bandwidth *h*.
In dimension 1, the bandwidth that minimizes the AMISE criteria is
(see [wand1994]_ eq 2.13 page 22):
.. math::
:label: AMISE1
h_{\operatorname{AMISE}}(K)
= \left( \frac{R(K)}{\mu_2(K)^2 R\left(p^{(2)}\right)}\right)^{\frac{1}{5}}n^{-\frac{1}{5}}
where the rugosity of the kernel is:
.. math::
R(K) = \int K(\vect{x})^2\, d\vect{x}
and the second raw moment of the kernel is:
.. math::
\mu_2(K) = \int \vect{x}^2K(\vect{x})\, d\vect{x} = \sigma_K^2.
In the equation :eq:`AMISE1`, the expression :math:`R\left(p^{(2)}\right)` is the rugosity of
the second derivative of the density probability function :math:`p` that
we wish to approximate.
Since, by hypothesis, the true density :math:`p` is unknown, its
second derivative is also unknown.
Hence the equation :eq:`AMISE1` cannot be used directly to compute the bandwidth.
We have ([wand1994]_ page 67):
.. math::
R\left(p^{(r)}\right) = (-1)^r\Psi_{2r}
where:
.. math::
\Psi_r(p)
= \int p^{(r)}p(x)\, dx = \mathbb{E}_\vect{X}\left[p^{(r)}\right].
Therefore:
.. math::
:label: AMISE
h_{\operatorname{AMISE}}(K)
= \left( \frac{R(K)}{\mu_2(K)^2\Psi_4(p)}\right)^{\frac{1}{5}}n^{-\frac{1}{5}}
Several methods exist to evaluate the optimal bandwidth :math:`h_{\operatorname{AMISE}}(K)` based on different approximations of :math:`\Psi_4`:
- Silverman's rule in dimension 1,
- the plug-in bandwidth selection,
- Scott's rule in dimension d.
Efficiency of a kernel
~~~~~~~~~~~~~~~~~~~~~~
Let :math:`K` be a kernel.
We may be interested if a particular kernel may be able to reduce the
estimation error.
The efficiency of a kernel is (see [scott2015]_ page 151):
.. math::
\operatorname{eff}(k)
= \frac{\sigma_k R(k)}{\sigma_{k_E} R(k_E)}
where :math:`k_E` is Epanechnikov's kernel.
The AMISE error is proportional to the efficiency (see [scott2015]_
eq. 6.25 page 151):
.. math::
\operatorname{AMISE} \propto \operatorname{eff}(k)
The next table presents several kernels available in the
library and their associated variance, rugosity and efficiency.
We see that the best kernel is Epanechnikov's kernel.
We also see that there is not much difference between the different
kernels.
This is one of the reasons why the normal kernel is often used.
+-----------------+---------------------------------+----------------+--------------------------+-----------------------------------+
| Kernel | :math:`\operatorname{Var}(k)` | :math:`R(k)` | :math:`\sigma_k R(k)` | :math:`\operatorname{eff}(k)` |
+=================+=================================+================+==========================+===================================+
| Epanechnikov | 0.2000 | 0.6000 | 0.2683 | 100.00 \% |
+-----------------+---------------------------------+----------------+--------------------------+-----------------------------------+
| Biweight | 0.1429 | 0.7143 | 0.2700 | 99.39 \% |
+-----------------+---------------------------------+----------------+--------------------------+-----------------------------------+
| Quartic | 0.1429 | 0.7143 | 0.2700 | 99.39 \% |
+-----------------+---------------------------------+----------------+--------------------------+-----------------------------------+
| Triweight | 0.1111 | 0.8159 | 0.2720 | 98.67 \% |
+-----------------+---------------------------------+----------------+--------------------------+-----------------------------------+
| Triangular | 0.1667 | 0.6667 | 0.2722 | 98.59 \% |
+-----------------+---------------------------------+----------------+--------------------------+-----------------------------------+
| Normal | 1.0000 | 0.2821 | 0.2821 | 95.12 \% |
+-----------------+---------------------------------+----------------+--------------------------+-----------------------------------+
| Uniform | 0.3333 | 0.5000 | 0.2887 | 92.95 \% |
+-----------------+---------------------------------+----------------+--------------------------+-----------------------------------+
| Logistic | 3.2899 | 0.1667 | 0.3023 | 88.76 \% |
+-----------------+---------------------------------+----------------+--------------------------+-----------------------------------+
**Table 1.** Efficiency of several order 2 kernels.
Silverman's rule (dimension 1)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In this section, we consider a random variable i.e. :math:`d = 1`.
If the density *p* is normal with standard deviation :math:`\sigma`,
then the term :math:`\Psi_4` can be exactly evaluated.
By definition, the Silverman rule for the bandwidth is
the optimal bandwidth of the AMISE criteria when the true density *p* is normal
(see [silverman1986]_ page 45):
.. math::
:label: Silverman
h^{Silver}(K)
:= h^{p = normal}_{\operatorname{AMISE}}(K)
= \left( \frac{8\sqrt{\pi} R(K)}{3\mu_2(K)^2}\right)^{\frac{1}{5}}
\sigma n^{-\frac{1}{5}}.
The Silverman rule is based on the hypothesis that the true
density *p* is close to the normal density,
even if the density *p* is not necessarily normal.
The equation :eq:`Silverman` is accurate when
the density is not *far* from a normal one.
In the special case where we use the normal kernel, the Silverman rule
is (see [silverman1986]_ eq 3.28 page 45):
.. math::
:label: SilvermanNormal
h^{Silver}(\mathcal{N})
= 1.06 \sigma n^{-\frac{1}{5}}.
Choice for the standard deviation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We estimate the standard deviation :math:`\sigma` by its sample
counterpart :math:`\hat{\sigma}`, evaluated from the sample
:math:`(x_1, \dots, x_n)`:
.. math::
:label: Estimpnormal
h^{Silver}(K)
= \left( \frac{8\sqrt{\pi} R(K)}{3\mu_2(K)^2}\right)^{\frac{1}{5}}
\hat{\sigma} n^{-\frac{1}{5}}
The estimator :math:`\hat{\sigma}` of the true standard deviation can
be estimated using the sample standard deviation based
on the sample :math:`(x_1, \dots, x_n)`.
This is:
.. math::
\hat{\sigma}
= \sqrt{\frac{1}{n - 1} \sum_{i = 1}^n (x_i - \bar{x})^2 }
where :math:`\bar{x}` is the sample mean:
.. math::
\bar{x}
= \frac{1}{n} \sum_{i = 1}^n x_i.
Another method is to use the standardized interquartile range
([wand1994]_ page 60):
.. math::
\widehat{\sigma}_{\operatorname{IQR}}
= \frac{\widehat{q}(3/4) - \widehat{q}(1/4)}{\Phi^{-1}(3/4) - \Phi^{-1}(1/4)}
where :math:`\Phi^{-1}` is the quantile function of the
standard normal distribution and
:math:`\widehat{q}(3/4)` and :math:`\widehat{q}(1/4)` are the sample
quartiles at levels 75% and 25% respectively.
The previous estimator is robust against outliers that might be
in the sample.
Plug-in bandwidth selection method (dimension 1)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The plug-in bandwidth selection method improves the estimation of the rugosity of the second
derivative of the density.
Instead of making the Gaussian assumption, the method uses a kernel smoothing method
in order to make an approximation of higher derivatives of the density.
This method is due to [sheather1991]_ who used ideas from [park1990]_.
The algorithm is presented in [wand1994]_, page 74 under the "Solve the equation rule" name.
The implementation uses ideas from [raykar2006]_, but the fast selection is not implemented.
The equation :eq:`AMISE` requires the evaluation of the quantity :math:`\Psi_4`.
We use the estimator :math:`\hat{\Psi}_r` of :math:`\Psi_r`, using a kernel
density estimator of the :math:`r`-th derivative of the
density.
The estimator is (see [wand1994]_ page 64):
.. math::
:label: EstimPhir
\hat{\Psi}_r(K)
= \frac{1}{n}\sum_{i=1}^{n} \widehat{p}^{(r)}(X_i)
where :math:`\hat{\Psi}_r(K)` is the estimator based on the kernel
*K*.
Deriving equation :eq:`kernelSmooth` leads to:
.. math::
:label: kernelSmoothDerivative
\widehat{p}^{(r)}(x)
= \frac{1}{nh^{r+1}}\sum_{i=1}^{n} K^{(r)}\left(\frac{x-X_i}{h}\right)
and then the estimator :math:`\hat{\Psi}_r(h)` is defined as:
.. math::
:label: EstimPhirFin
\hat{\Psi}_r(h)
= \frac{1}{n^2h^{r+1}}\sum_{i=1}^{n}\sum_{j=1}^{n} K^{(r)}\left(\frac{X_i-X_j}{h}\right)
We note that :math:`\hat{\Psi}_r(h)` depends of the parameter *h* which can be
taken in order to minimize the Asymptotic Mean Square Error (AMSE) criteria
evaluated between :math:`\Psi_r` and :math:`\hat{\Psi}_r(h)`.
The optimal parameter *h* is:
.. math::
:label: optimHamse
h^{(r)}_{\operatorname{AMSE}}
= \left(\frac{-2K^{(r)}(0)}{\mu_2(K) \Psi_{r+2}}\right)^{\frac{1}{r+3}}n^{-\frac{1}{r+3}}
The previous equation states that the bandwidth :math:`h^{(r)}` required
to compute :math:`\widehat{p}^{(r)}` depends on :math:`\Psi_{r+2}`.
But to compute :math:`\Psi_{r+2}`, we need :math:`h^{(r + 2)}`, etc.
The goal of the method is to break this infinite set of equations at some point
by providing a *pilot* bandwidth.
The :math:`\ell`-stage plug-in bandwidth method uses :math:`\ell` different
intermediate bandwidths before evaluating the final one.
In this document, we present the two stage solve-the-equation plug-in method.
- The equation :eq:`AMISE` defines :math:`h_{\operatorname{AMISE}}(K)` as a function of :math:`\Psi_4`.
Let :math:`t` be the function defined by the equation:
.. math::
:label: rel1
h_{\operatorname{AMSE}}(K) = t(\Psi_4).
- The term :math:`\Psi_4` is approximated by its estimator defined in
:eq:`EstimPhirFin` evaluated with its optimal parameter :math:`h^{(4)}_{\operatorname{AMSE}}`
defined in :eq:`optimHamse`:
.. math::
:label: h4
h^{(4)}_{\operatorname{AMSE}}
= \left(\frac{-2K^{(4)}(0)}{\mu_2(K)\Psi_{6}}\right)^{\frac{1}{7}}n^{-\frac{1}{7}}
which leads to the approximation:
.. math::
:label: rel2
\hat{\Psi}_4 \left(h^{(4)}_{\operatorname{AMSE}}\right) \approx \Psi_4
- The equation :eq:`AMISE` and :eq:`h4` lead to:
.. math::
:label: h4hAmise
h^{(4)}_{\operatorname{AMSE}}
= \left( \frac{-2K^{(4)}(0)\mu_2(K)\Psi_4}{R(K)\Psi_{6}}\right) ^{\frac{1}{7}}h_{\operatorname{AMISE}}(K)^{\frac{5}{7}}.
Let :math:`\ell` be the function defined by the equation:
.. math::
:label: rel3
h^{(4)}_{\operatorname{AMSE}}
= \ell(h_{\operatorname{AMISE}}(K)).
- The equation :eq:`h4hAmise` depends on both terms :math:`\Psi_4` and
:math:`\Psi_6` which are evaluated with their estimators defined in :eq:`EstimPhirFin`
respectively with their AMSE optimal parameters :math:`g_1` and :math:`g_2`
(see eq. :eq:`optimHamse`). It leads to the expressions:
.. math::
:label: g12
g_1 & = \left(\frac{-2K^{(4)}(0)}{\mu_2(K)\Psi_{6}}\right)^{\frac{1}{7}}n^{-\frac{1}{7}}\\
g_2 & = \left(\frac{-2K^{(6)}(0)}{\mu_2(K)\Psi_{8}}\right)^{\frac{1}{7}}n^{-\frac{1}{9}}
- In order to evaluate :math:`\Psi_6` and :math:`\Psi_8`,
we assume that the density *p* is normal with a variance :math:`\sigma^2`
which is approximated by the empirical variance of the sample, which leads to:
.. math::
:label: Phi68
\hat{\Psi}_6 & = \frac{-15}{16\sqrt{\pi}}\hat{\sigma}^{-7}\\
\hat{\Psi}_8 & = \frac{105^{\strut}}{32\sqrt{\pi}}\hat{\sigma}^{-9}
Finally, thanks to the equations :eq:`rel1`, :eq:`rel2`, :eq:`rel3`, :eq:`g12` and :eq:`Phi68`,
the optimal bandwidth of the STE rule, :math:`h^{\operatorname{STE}}`, is solution of the equation:
.. math::
:label: equhAmise
h^{\operatorname{STE}}
= t \circ \hat{\Psi}_4 \circ \ell (h^{\operatorname{STE}})
This equation does not necessarily have a close form expression and
an numerical method must be used in general.
A cut-off value can be used to define the function :math:`\widehat{\psi_r}` in the equation :eq:`EstimPhirFin`.
Let :math:`\phi` be the probability density function of the standard Gaussian distribution.
We have:
.. math::
\phi(x) \rightarrow 0
when :math:`|x|\rightarrow +\infty`, with a fast decrease to zero.
Let :math:`t> 0` the cut-off value.
The evaluation is as follows:
.. math::
\widetilde{\phi}(x)=
\begin{cases}
\phi(x) & \textrm{ if } |x| \leq t, \\
0 & \textrm{ otherwise}.
\end{cases}
Hence, only the most significant values in the evaluation of :math:`\hat{\psi_r}`
are taken into account, which improves the speed while slightly decreasing
the accuracy.
Rescaling a bandwidth
~~~~~~~~~~~~~~~~~~~~~
In this section, we show that, if the optimal bandwidth is known
for the normal kernel, then it can be computed for any kernel
*K* using a rescaling equation.
Let :math:`K_1` and :math:`K_2` be two kernels.
The equation :eq:`AMISE1` implies:
.. math::
:label: ChangeBandwidth
\frac{h_{\operatorname{AMISE}}(K_1)}{h_{\operatorname{AMISE}}(K_2)}=\frac{\sigma_{K_2}}{\sigma_{K_1}}
\left(\frac{\sigma_{K_1}R(K_1)}{\sigma_{K_2}R(K_2)}\right)^{1/5}.
Scott (see [scott2015]_ table 6.2 page 152) notices that:
.. math::
\frac{\sigma_{K_1}R(K_1)}{\sigma_{K_2}R(K_2)} \in [1, 1.86]
for many pairs of common kernels.
Hence the equation :eq:`ChangeBandwidth` implies the *equivalent
kernel rescaling equation* (see [scott2015]_ eq. 6.30 page 154):
.. math::
:label: SimplifiedChangeBandwidth
h_{\operatorname{AMISE}}(K_1) \approx h_{\operatorname{AMISE}}(K_2)\frac{\sigma_{K_2}}{\sigma_{K_1}}
Consider for example the normal kernel :math:`K_2 = \mathcal{N}(0,1)`.
Since :math:`\sigma_{K_1} = \sigma_{\mathcal{N}(0,1)} = 1`,
then equation :eq:`SimplifiedChangeBandwidth` implies:
.. math::
:label: SimplifiedChangeBandwidthNormal
h_{\operatorname{AMISE}}(K) \approx h_{\operatorname{AMISE}}(\mathcal{N})\frac{1}{\sigma_{K}}
We will use the previous equation in the derivation of the
*mixed* rule presented in the next section.
The previous equation applied to the Silverman rule implies:
.. math::
:label: SimplifiedChangeBandwidthSilvNormal
h^{Silver}(K) \approx h^{Silver}(\mathcal{N})\frac{1}{\sigma_{K}}
A mixed rule for a large sample
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When the sample size :math:`n` is large, the *solve-the-equation* (STE)
rule cannot be applied because of its CPU cost.
In this case, we use a method which combines the STE rule
and the Silverman rule, which is less costly.
Moreover, we combine these rules using two different kernels, namely
the kernel *K* given by the user and the normal kernel :math:`\mathcal{N}(0, 1)`.
Finally, we combine two different samples, that is to say the
large sample size :math:`n` and a smaller sample size for which the
STE rule can be evaluated.
The equation :eq:`AMISE` implies that:
.. math::
\frac{h_{\operatorname{AMISE}}(K)}{h^{Silver}(K)}
= \left(\frac{\Psi_4(\mathcal{N})}{\Psi_4(p)}\right)^{1/5}
where *K* is a given kernel and :math:`h_{\operatorname{AMISE}}(K)` is the
optimal AMISE bandwidth for the kernel *K*.
We notice that the previous ratio is independent from the sample
size :math:`n`.
Let :math:`n_t \ll n` be a small sample size.
Hence, the ratio is the same if we consider the sample size :math:`n`
or the sample size :math:`n_t`.
We apply this equation to the normal kernel, approximate the
AMISE optimal bandwidth by the STE rule and use the sample
sizes :math:`n` and :math:`n_t`.
We get:
.. math::
\frac{h^{n, STE}(\mathcal{N})}{h^{n, Silver}(\mathcal{N})}
\approx \frac{h^{n_t, STE}(\mathcal{N})}{h^{n_t, Silver}(\mathcal{N})}
which implies:
.. math::
h^{n, STE}(\mathcal{N})
\approx \frac{h^{n_t, STE}(\mathcal{N})}{h^{n_t, Silver}(\mathcal{N})}
h^{n, Silver}(\mathcal{N})
The equation :eq:`SimplifiedChangeBandwidthNormal` leads to the
bandwidth of the STE rule for the kernel *K*:
.. math::
h^{n, STE}(K)
\approx h^{n, STE}(\mathcal{N}) \frac{1}{\sigma_{K}}.
We substitute the expression of :math:`h^{n, STE}` in the
previous equation and get the *mixed* rule:
.. math::
:label: MixedBandwidthRule
h^{n, STE}(K)
\approx \frac{h^{n_t, STE}(\mathcal{N})}{h^{n_t, Silver}(\mathcal{N})}
h^{n, Silver}(\mathcal{N}) \frac{1}{\sigma_{K}}.
Scott rule (dimension d)
~~~~~~~~~~~~~~~~~~~~~~~~
In this section, we consider the general case where the
random vector has dimension :math:`d`.
The Scott rule is a simplification of the Silverman rule generalized to the
dimension *d* which is optimal when the density *p* is normal with independent components.
In all the other cases, it gives an empirical rule that gives good result when the density *p* is not *far* from the normal one.
For examples, the Scott bandwidth may appear too large when *p* presents several maximum.
The Silverman rule given in dimension 1 in equation :eq:`Silverman` can be generalized in dimension *d* as follows.
We make the assumption that the density *p* is normal with independent components,
in dimension *d* and that we use the normal kernel :math:`\mathcal{N}(0,1)`
to estimate it.
Therefore the optimal bandwidth vector :math:`\vect{h}` with respect to the
AMISE criteria is given by the *normal reference rule* (see [scott2015]_ eq.
6.43 page 164):
.. math::
:label: SilvermanNormalKernel
\vect{h}^{Silver}(\mathcal{N}) = \left(\left(\frac{4}{d+2}\right)^{1 / (d + 4)}\hat{\sigma}_i^n n^{-1 / (d + 4)}\right)_i
where :math:`\hat{\sigma}_i^n` is the standard deviation of the *i*-th component of the sample
:math:`(\vect{X}_1, \cdots, \vect{X}_n)`, and :math:`\sigma_K` the standard deviation of the 1D kernel *K*.
Scott' method is a simplification of Silverman's rule, based on the fact that the coefficient
:math:`\left(\frac{4}{d+2}\right)^{1 / (d + 4)}` remains in :math:`[0.924, 1.059]` when the dimension *d* varies (see [scott2015]_ page 164).
Thus, Scott fixed it to *1*:
.. math::
:label: coefficientScott
\left(\frac{4}{d+2}\right)^{1 / (d + 4)} \approx 1.
This leads to Scott's rule (see [scott2015]_ eq. 6.44 page 164):
.. math::
:label: SilvermanNormalKernelSimplif
\vect{h}^{Silver}(\mathcal{N}) \approx \left( \hat{\sigma}_i^n n^{-1 / (d + 4)}\right)_i
Finally, the equations :eq:`SilvermanNormalKernelSimplif` and :eq:`SimplifiedChangeBandwidthSilvNormal`
applied in each direction *i* imply:
.. math::
:label: ScottRule
\vect{h}^{Scott}
= \left(\frac{\hat{\sigma}_i^n}{\sigma_K}n^{-1 / (d + 4)}\right)_i
for :math:`i = 1, ..., d`.
Boundary treatment
~~~~~~~~~~~~~~~~~~
In this section, we consider a random variable i.e. :math:`d = 1`.
Assume that the domain of definition of the density is bounded.
Then one of the problems of kernel smoothing is that it may
produce a non zero density estimate even in the regions where
we know it is zero.
This is known as the *boundary bias problem* (see [silverman1986]_ page 29).
The reason is that a subpart of the kernel windows does not contain
any observation ([wand1994]_ page 127).
In this case, for some observation :math:`x_i` near the boundary,
the density may be underestimated if the kernel sets a positive weight
outside the domain ([chacon2018]_ page 73).
There are several methods to solve this problem.
One of the methods is to apply a transformation to the data
(see [chacon2018]_ page 73).
Another method is to use boundary kernels (see [chacon2018]_ page 76,
[scott2015]_ page 157).
In dimension 1, the boundary effects may be taken into account using
a *reflection* or *mirroring* method (see [silverman1982]_ page 31, [jones1993]_).
the boundaries are automatically detected from the sample
(with the *min* and *max* functions) and the kernel smoothed PDF
is corrected in the boundary areas to remain within the boundaries,
according to the mirroring technique:
- the Scott bandwidth is evaluated from the sample: *h*
- two sub-samples are extracted from the initial sample,
containing all the points within the range :math:`[min, min + h[` and :math:`]max-h, max]`,
- both sub-samples are transformed into their symmetric samples with respect their respective boundary:
its results two samples within the range :math:`]min-h, min]` and :math:`[max, max+h[`,
- a kernel smoothed PDF is built from the new sample composed with
the initial one and the two new ones, with the previous bandwidth *h*,
- this last kernel smoothed PDF is truncated within the initial range :math:`[min, max]` (conditional PDF).
Log-transform treatment
~~~~~~~~~~~~~~~~~~~~~~~
In this section, we consider a random variable i.e. :math:`d = 1`. This treatment is highly suited to skewed distributions,
which are all challenging for kernel smoothing. See [charpentier2015]_ to get more details.
Let :math:`(X_i)_{1 \leq i \leq \sampleSize}` be some independent random variates, identically distributed according to :math:`X`.
The log-transform treatment maps each :math:`X_j` into :math:`Y_j` as follows:
.. math::
Y_j = T(X_j) = \left |
\begin{cases}
\log (X_j - \min_{i} X_i + \delta) & \mbox{if } \gamma_1(X) > 0\\
\log (\max_{i} X_i - X_j + \delta) & \mbox{if } \gamma_1(X) > 0
\end{cases}
\right.
where :math:`\gamma_1(X) = \dfrac{\Expect{\left( X - \mu\right)^3}}{\sigma}`
is the skewness of :math:`X` with :math:`\mu = \Expect{X}`, :math:`\sigma^2 = \Var{X}`
and :math:`\delta \in \Rset^+_*` the shift scale.
Once a kernel smoothed distribution has been fitted on the transformed data, the fitted distribution of :math:`X`
is built as :math:`T^{-1}(Y)` where :math:`Y` is distributed according to the kernel smoothed distribution.
Given a sample :math:`(x_i)_{1 \leq i \leq n}` from :math:`X`, we denote by :math:`\hat{a} = \min_{i} x_i`,
:math:`\hat{b} = \max_{i} x_i` and :math:`y_i = T(x_i)` for :math:`1 \leq i \leq n`.
We build the kernel smoothing distribution of :math:`Y` using :math:`(y_i)_{1 \leq i \leq n}`
which pdf is :math:`\hat{p}_Y` and cdf :math:`\hat{F}_Y`.
We recover the pdf and cdf of :math:`X` as follows:
.. math::
\hat{F}_X(x) & = \hat{F}_Y(T(x)) \\
\hat{p}_X(x) & = T'(x) \hat{p}_Y(T(x))
We note that this transformation also embeds a treatment of the boundaries as the finite lower bound in case of positive skewness
or the finite upper bound in case of negative skewness is rejected to infinity. Thus, there is no more boundary effect on the
:math:`Y`-sample.
Conclusion
~~~~~~~~~~
The next table presents a summary of histogram, kernel smoothing and
parametric methods.
It appears that the kernel density estimator has an AMISE error which is
quite close to the parametric rate.
+------------------+-----------------------------------------+
| Method | Optimal :math:`\operatorname{AMISE}` |
+==================+=========================================+
| Histogram | :math:`\propto n^{-\frac{2}{3}}` |
+------------------+-----------------------------------------+
| Kernel smoothing | :math:`\propto n^{-\frac{4}{5}}` |
+------------------+-----------------------------------------+
| Parametric | :math:`\propto n^{-1}` |
+------------------+-----------------------------------------+
**Table 2.** The AMISE error depending on the method to estimate the density,
from the least to the most accurate.
The next table compare the different estimators of the
bandwidth that we have presented so far.
The best method is the STE rule, but this can be
costly to evaluate if the sample is large.
In this case the *mixed* rule can be used.
If this rule is still too large, then the Silverman rule can be
used and might be satisfactory if the true density *p*
is not too far away from the normal distribution (i.e.
unimodal and symmetric).
Otherwise, the Silverman rule may produce a too large bandwidth,
leading to oversmoothing.
+--------------------------+----------------------+---------------+----------------------------+
| Method | Assumption | Cost | Accuracy |
+==========================+======================+===============+============================+
| Silverman | Normal assumption | Low | If *p* not far from normal |
+--------------------------+----------------------+---------------+----------------------------+
| Mixed | Normal assumption | Moderate | Intermediate |
+--------------------------+----------------------+---------------+----------------------------+
| Solve-the-equation (STE) | Normal assumption | High | Accurate |
+--------------------------+----------------------+---------------+----------------------------+
**Table 3.** Different estimators of the bandwidth from the least to the
most accurate.
.. topic:: API:
- See the :class:`~openturns.KernelSmoothing` factory
.. topic:: Examples:
- See :doc:`/auto_data_analysis/distribution_fitting/plot_estimate_non_parametric_distribution`
.. topic:: References:
- [silverman1986]_
- [wand1994]_
- [scott2015]_
- [sheather1991]_
- [park1990]_
- [raykar2006]_
- [silverman1982]_
|