1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
|
.. _enumeration_strategy:
Chaos basis enumeration strategies
----------------------------------
The *functional chaos* expansion allows one to obtain an explicit
representation of the random response :math:`\vect{Y}` of the
model under consideration. More precisely, the response is cast
as a converging series featuring an orthonormal basis. For
computational purpose, it is necessary though to retain a finite
number of terms by truncating the expansion. First of all, a specific
strategy for enumerating the infinite PC series has to be defined.
This is the scope of the current section.
Given an input random vector :math:`\vect{X}` with prescribed
probability density function (PDF) :math:`f_{\vect{X}}(\vect{x})`, it is
possible to build up a *functional chaos* multivariate basis
:math:`\{\psi_{\idx},\idx \in \NM\}` by tensorization of univariate
functions associated to each marginal input variable.
We define the multi-indices associated to the marginal degrees of the
univariate marginal functions:
.. math::
\idx = (\alpha_1, \dots, \alpha_{n_X}) \in \mathbb{N}^{n_X}
The component :math:`\alpha_i` defines the marginal degree of the univariate
basis term associated to the variable :math:`X_i`.
For :math:`i = 1, ..., n_X`, let :math:`\pi_{\alpha_i}^{(i)}` be a univariate basis term of marginal degree :math:`\alpha_i` depending on the i-th standardized variable :math:`\xi_i`.
Then, the multivariate basis term :math:`\psi_{\idx}` is defined by the product:
.. math::
\psi_{\idx} (\vect{\xi}) = \pi_{\alpha_1}^{(1)}(\xi_1) \times \dots \times \pi_{\alpha_{n_X}}^{({n_X})}(\xi_{n_X})
for any :math:`\vect{\xi} \in \mathbb{R}^{n_X}`.
Let us first define the *length* of any multi-index :math:`{\idx} \in {\Nset}^{n_X}` by
.. math::
|{\idx}| = \sum_{i=1}^{n_X} \alpha_i
When the multi-index represents the marginal degrees of a polynomial,
the length of the multi-index is the total degree of the polynomial.
An enumeration rule is a method to explore this basis.
It is defined by an enumeration function :math:`\tau` from :math:`\Nset` to :math:`\NM`,
which creates a one-to-one mapping between an integer :math:`j` and a multi-index :math:`\idx`.
Mathematically speaking, it is a bijective enumeration function :math:`\tau` defined by:
.. math::
\begin{array}{llcl}
\tau \, : & \Nset & \longrightarrow & \NM \\
& j & \longmapsto & \idx = \{\alpha_1(j),\dots, \alpha_{n_X}(j)\} \\
\end{array}
Linear enumeration strategy
^^^^^^^^^^^^^^^^^^^^^^^^^^^
A natural choice to sort the PC basis (i.e. the multi-indices :math:`\idx`) is the
lexicographical order with a constraint of increasing total degree.
The linear enumeration function :math:`\tau : \Nset \longrightarrow \Nset^{n_X}` is a function:
.. math::
\idx(j) = (\alpha_1(j),\dots, \alpha_{n_X}(j))
for :math:`j \in \Nset` such that:
.. math::
\idx(0) = (0,\dots,0).
Furthermore, for any :math:`k \in \Nset` and any :math:`j \in \{1, ..., k - 1\}`, we say that:
.. math::
\idx(j) < \idx(k)
if either (i) the length of :math:`\idx(j)` is strictly lower than :math:`\idx(k)` i.e.:
.. math::
\left|\idx(j)\right| < \left|\idx(k)\right|
or (ii) the length of :math:`\idx(j)` equal to the length of :math:`\idx(k)` i.e.
.. math::
\left|\idx(j)\right| = \left|\idx(k)\right|
and there exists :math:`m \in \{1,\dots,n_X\}` such that:
.. math::
\begin{array}{ll}
& \alpha_1(j) = \alpha_1(k) \\
& \alpha_2(j) = \alpha_2(k) \\
& \vdots \\
& \alpha_{m - 1}(j) = \alpha_{m - 1}(k) \\
& \alpha_m(j) < \alpha_m(k).
\end{array}
The conditions (i) and (ii) ensure that the mapping :math:`\tau` implies a strict order on the set :math:`{\idx} \in {\Nset}^{n_X}`.
The condition (i) states that the two multi-indices :math:`\idx_j` and :math:`\idx_k` are not on the same strata.
The condition (ii) states that, if the two multi-indices :math:`\idx_j` and :math:`\idx_k` are on the same strata,
then at least one of the component (denoted by :math:`m` in the definition) is different while the previous components are equal.
Such an enumeration strategy is illustrated in a two-dimensional case
(i.e. :math:`n_X=2`) in the figure below:
.. plot::
import matplotlib.pyplot as plt
# Create the figure
plt.figure(1, figsize=(4, 4))
ax = plt.subplot(111)
# Create the points
ax.plot([0, 0, 1, 0, 1, 2, 3, 2, 1, 0], [
0, 1, 0, 2, 1, 0, 0, 1, 2, 3], "o", markersize=9)
# Create the arrows
ax.annotate("",
xy=(0.97, 0), xycoords='data',
xytext=(0, 0), textcoords='data',
arrowprops=dict(
arrowstyle="-|>", linestyle="dashed", mutation_scale=15,
connectionstyle="arc3", color='black'),
)
ax.arrow(1, 0, -0.97, 0.97, head_width=0.08, head_length=0.08, fc='k',
ec='k', length_includes_head=True, linestyle="dashed",)
ax.arrow(0, 1, 1.97, -0.97, head_width=0.08, head_length=0.08, fc='k',
ec='k', length_includes_head=True, linestyle="dashed",)
ax.arrow(2, 0, -1.97, 1.97, head_width=0.08, head_length=0.08, fc='k',
ec='k', length_includes_head=True, linestyle="dashed",)
ax.arrow(0, 2, 2.97, -1.97, head_width=0.08, head_length=0.08, fc='k',
ec='k', length_includes_head=True, linestyle="dashed",)
ax.arrow(3, 0, -2.97, 2.97, head_width=0.08, head_length=0.08, fc='k',
ec='k', length_includes_head=True, linestyle="dashed",)
ax.arrow(0, 3, 1.97, -0.97, head_width=0.08, head_length=0.08, fc='k',
ec='k', length_includes_head=True, linestyle="dashed",)
# Annotate points
ax.annotate('4',
xy=(1, 1), xycoords='data',
xytext=(-20, -5), textcoords='offset points', fontsize=16)
ax.annotate('7',
xy=(2, 1), xycoords='data',
xytext=(+15, +0), textcoords='offset points', fontsize=16)
ax.annotate('8',
xy=(1, 2), xycoords='data',
xytext=(+15, +0), textcoords='offset points', fontsize=16)
# Add labels
ax.annotate(r'$\tau_1$', xy=(1, 0), xytext=(10, 10), ha='left', va='center',
xycoords='axes fraction', textcoords='offset points', fontsize=20)
ax.annotate(r'$\tau_2$', xy=(0, 1), xytext=(0, 10), ha='left', va='center',
xycoords='axes fraction', textcoords='offset points', fontsize=20)
# Hide spines
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
# Set spines's position
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data', 0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data', 0))
# Add labels
plt.xticks([-0.1] + list(range(4)) + [3.2])
ax.set_xticklabels(('', '$0$', '$1$', '$3$', '$6$', ''), fontsize=20)
plt.yticks([-0.1] + list(range(4)) + [3.2])
ax.set_yticklabels(('', '', '$2$', '$5$', '$9$', ''), fontsize=20)
# Show the figure
plt.show()
This corresponds to the following enumeration of the multi-indices:
+-------------+-----------------------------------------------+----------------+
| :math:`j` | :math:`\idx \, = \, \{\alpha_1,\alpha_2\}` | :math:`|\idx|` |
+=============+===============================================+================+
| :math:`0` | :math:`\{0,0\}` | 0 |
+-------------+-----------------------------------------------+----------------+
| :math:`1` | :math:`\{0,1\}` | 1 |
+-------------+-----------------------------------------------+----------------+
| :math:`2` | :math:`\{1,0\}` | 1 |
+-------------+-----------------------------------------------+----------------+
| :math:`3` | :math:`\{2,0\}` | 2 |
+-------------+-----------------------------------------------+----------------+
| :math:`4` | :math:`\{1,1\}` | 2 |
+-------------+-----------------------------------------------+----------------+
| :math:`5` | :math:`\{0,2\}` | 2 |
+-------------+-----------------------------------------------+----------------+
| :math:`6` | :math:`\{3,0\}` | 3 |
+-------------+-----------------------------------------------+----------------+
| :math:`7` | :math:`\{2,1\}` | 3 |
+-------------+-----------------------------------------------+----------------+
| :math:`8` | :math:`\{1,2\}` | 3 |
+-------------+-----------------------------------------------+----------------+
| :math:`9` | :math:`\{0,3\}` | 3 |
+-------------+-----------------------------------------------+----------------+
Hyperbolic enumeration strategy
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The *hyperbolic* truncation strategy is inspired by the so-called
*sparsity-of-effects principle*, which states that most models are
principally governed by main effects and low-order interactions.
Accordingly, one wishes to define an enumeration strategy which first
selects those multi-indices related to main effects, i.e. with a
reasonably small number of nonzero components, prior to selecting
those associated with higher-order interactions.
For any real number :math:`q` in :math:`(0,1]`, one defines the
:math:`q`-*hyperbolic norm* (or :math:`q`-*norm* for short) of a
multi-index :math:`\idx` by:
.. math:: \|\idx\|_{q} \, \, = \, \, \left(\sum_{i=1}^{n_X} \; \alpha_i^q \right)^{1/q}
Strictly speaking, :math:`\|\cdot\|_q` is not properly a norm but
rather a *quasi-norm* since it does not satisfy the triangular
inequality. However this abuse of language will be used in the
following. Note that the case :math:`q=1` corresponds to the
definition of the total degree.
Let :math:`\lambda` be a real positive number. One defines the set of
multi-indices with :math:`q`-norm not greater than :math:`\lambda` as
follows:
.. math::
:label: eq_q_set
\cA_{\lambda} \, \, = \, \, \{\idx \in \NM \, : \, \|\idx\|_q \, \leq \lambda \}
Moreover, one defines the *front* of :math:`\cA_{\lambda}` by:
.. math:: \partial \cA_{\lambda} \, \, = \, \, \left\{\idx \in \cA_{\lambda} \, : \, \exists \; i \; \in \; \{1,\dots,n_X\} \, , \, \, \idx \, + \, \vect{e_i} \, \notin \, \cA_{\lambda} \right\}
where :math:`\vect{e_i}` is a multi-index with a unit :math:`i`-entry
and zero :math:`k`-entries, :math:`k\neq i`.
The idea consists in exploring the space :math:`\NM` by progressively
increasing the :math:`q`-norm of its elements. In this purpose, one
wants to construct an enumeration function that relies upon (1) the
bijection :math:`\tau` defined in the previous paragraph and (2) an
appropriate increasing sequence :math:`(\lambda_n)_{\Nset}` that tends
to infinity. Such a sequence can be used to define a specific
partition of :math:`\NM` into *strata* :math:`(\Delta_n)_{\Nset}`.
Precisely, the enumeration of the multi-indices is achieved by sorting
the elements of :math:`\Delta_n` in ascending order of the
:math:`q`-norm, and then by sorting the possible elements having the
same :math:`q`-norm using the bijection :math:`\tau`. Several examples
of partition are given in the sequel.
*Partition based on the total degree.* We can simply define the
sequence :math:`(\lambda_n)_{\Nset}` as the set of natural integers
:math:`\Nset`. Thus we build up a sequence :math:`(\Delta_n)_{\Nset}`
of strata as follows:
.. math::
\left\{
\begin{array}{l}
\Delta_0 \, \, = \, \, \{\vect{0}\} \\
\forall \; n \geq 1 \, \, , \, \, \Delta_n \, \, = \, \, \cA_{n} \; \setminus \; \cA_{n-1} \, \, = \, \,
\{\idx \in \NM \, : \, n - 1 \, < \, \|\idx\|_q \, \leq n \} \\
\end{array}
\right.
The progressive exploration of :math:`\NM` is depicted in the
two-dimensional case for various values of the parameter :math:`q`:
.. plot::
import openturns as ot
from matplotlib import pyplot as plt
from openturns.viewer import View
nrows=3
ncols=4
# coordinates of grid
grid = ot.Box([5, 5], ot.Interval([0.0]*2, [6.0]*2))
sample = grid.generate()
grid_x = sample.getMarginal(0)
grid_y = sample.getMarginal(1)
#plt.rc('text', usetex=True)
q_values = [1.0, 0.75, 0.5]
fig = plt.figure()
index = 1
for i in range(nrows):
q = q_values[i]
enumerate = ot.HyperbolicAnisotropicEnumerateFunction(2, q)
for j in range(ncols):
ax = fig.add_subplot(nrows, ncols, index, aspect=1.0)
ax.plot(grid_x, grid_y, 'xr')
strataIndex = j + 3
strata_x, strata_y = [], []
strataCardinal = enumerate.getStrataCumulatedCardinal(strataIndex)
for ii in range(strataCardinal):
x = enumerate(ii)
strata_x.append(x[0])
strata_y.append(x[1])
ax.plot(strata_x, strata_y, 'ob')
ax.set_yticks([])
#ax.set_title('$||x||_{'+str(q)+'} \leq '+str(strataIndex)+'$')
ax.set_title('||x||q=' + str(q) + ' < ' + str(strataIndex))
index += 1
plt.subplots_adjust(hspace=0.5)
plt.show()
As expected, the hyperbolic norms penalize the indices associated with
high-order interactions all the more since :math:`q` is low. Note that
setting :math:`q` equal to 1 corresponds to the usual *linear*
enumeration strategy. Then the retained basis terms are located under
a straight line, hence the label *linear enumeration strategy*. In
contrast, when :math:`q < 1`, the retained basis terms are
located under an hyperbola, hence the name *hyperbolic enumeration
strategy*.
*Partition based on disjoint fronts.* Instead of considering the
sequence of natural integers, we define the sequence
:math:`(\lambda_n)_{\Nset}` recursively by:
.. math::
\left\{
\begin{array}{l}
\lambda_0 \, \, = \, \, 0 \\
\forall \; n \geq 1 \, \, , \, \, \lambda_n \, \, = \, \,
\inf_{\lambda \in \Rset^+} \; \left\{ \lambda \geq \lambda_{n-1} \, \, \mbox{ and } \, \,\partial \cA_{\lambda} \, \cap \, \partial \cA_{\lambda_{n-1}} \, = \, \emptyset \right\}
\end{array}
\right.
In other words, :math:`\lambda_n` is the infimum of the real numbers
:math:`\lambda` for which the new front contains only element which do
not belong to the former one. Hence the sequence of strata:
.. math::
\left\{
\begin{array}{l}
\Delta_0 \, \, = \, \, \{\vect{0}\} \\
\forall \; n \geq 1 \, \, , \, \, \Delta_n \, \, = \, \, \cA_{\lambda_n} \; \setminus \; \cA_{\lambda_{n-1}} \\
\end{array}
\right.
Note that this partition of :math:`\NM` is finer than the one based
on total degrees, since the cardinality of the strata is smaller.
Anisotropic hyperbolic enumeration strategy
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
One might also consider enumeration strategies based on an
*anisotropic* hyperbolic norm defined by:
.. math:: \|\idx\|_{\vect{w},q} \, \, = \, \, \left(\sum_{i=1}^{n_X} \; w_i\; \alpha_i^q \right)^{1/q}
where the :math:`w_i`\ ’s are real positive numbers. This would lead
to first select the basis terms depending on a specific subset
of input variables.
In this setup, it is also possible to explore the space :math:`\NM` of
the multi-indices by partitioning it according to one of the two
schemes outlined in the previous paragraph (it is only necessary to
replace the isotropic :math:`q`-norm in :eq:`eq_q_set` with the
:math:`(\vect{w},q)`-anisotropic one).
We may also build up an alternative partition related to the *partial
degree* of the most important variable, i.e. the one associated to the
*smallest* weight :math:`w_i`. Then the sequence
:math:`(\lambda_n)_{\Nset}` is equal to :math:`\Nset` and the sets
:math:`\cA_{\lambda}` are defined by:
.. math:: \cA_{\lambda} \, \, = \, \, \{\idx \in \NM \, : \, \alpha_{i^*} \, \leq \lambda \} \quad \quad , \quad \quad i^* \, \, = \, \, \mbox{arg} \min \left\{w_i \; , \; 1\leq i \leq n_X \right\}
If strata with larger cardinalities are of interest, one may rather
consider the partial degree of the least significant variable, i.e.
the one associated with the *greatest* weight :math:`w_i`. To this
end, the index :math:`i^*` in the previous formula has to be defined
by:
.. math:: i^* \, \, = \, \, \mbox{arg} \max \left\{w_i \; , \; 1\leq i \leq n_X \right\}
Infinity norm enumeration strategy
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
One might also consider an enumeration strategies based on the infinite norm:
.. math:: \|\idx\|_{\infty} \, \, = \, \, \max_{i=1}^{n_X} \; \alpha_i
This corresponds to the following enumeration of the multi-indices:
+-------------+-----------------------------------------------+----------------+
| :math:`j` | :math:`\idx \, = \, \{\alpha_1,\alpha_2\}` | :math:`|\idx|` |
+=============+===============================================+================+
| :math:`0` | :math:`\{0,0\}` | 0 |
+-------------+-----------------------------------------------+----------------+
| :math:`1` | :math:`\{1,0\}` | 1 |
+-------------+-----------------------------------------------+----------------+
| :math:`2` | :math:`\{0,1\}` | 1 |
+-------------+-----------------------------------------------+----------------+
| :math:`3` | :math:`\{1,1\}` | 1 |
+-------------+-----------------------------------------------+----------------+
| :math:`4` | :math:`\{2,0\}` | 2 |
+-------------+-----------------------------------------------+----------------+
| :math:`5` | :math:`\{2,1\}` | 2 |
+-------------+-----------------------------------------------+----------------+
| :math:`6` | :math:`\{0,2\}` | 2 |
+-------------+-----------------------------------------------+----------------+
| :math:`7` | :math:`\{1,2\}` | 2 |
+-------------+-----------------------------------------------+----------------+
| :math:`8` | :math:`\{2,2\}` | 2 |
+-------------+-----------------------------------------------+----------------+
| :math:`9` | :math:`\{3,0\}` | 3 |
+-------------+-----------------------------------------------+----------------+
.. topic:: API:
- See :class:`~openturns.LinearEnumerateFunction`
- See :class:`~openturns.HyperbolicAnisotropicEnumerateFunction`
- See :class:`~openturns.NormInfEnumerateFunction`
.. topic:: Examples:
- See :doc:`/auto_meta_modeling/polynomial_chaos_metamodel/plot_functional_chaos`
- See :doc:`/auto_meta_modeling/polynomial_chaos_metamodel/plot_enumeratefunction`
- See :doc:`/auto_meta_modeling/fields_metamodels/plot_fieldfunction_metamodel`
.. topic:: References:
- [blatman2009]_
|