File: enumeration_strategy.rst

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (447 lines) | stat: -rw-r--r-- 19,388 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
.. _enumeration_strategy:

Chaos basis enumeration strategies
----------------------------------

The *functional chaos* expansion allows one to obtain an explicit
representation of the random response :math:`\vect{Y}` of the
model under consideration. More precisely, the response is cast
as a converging series featuring an orthonormal basis. For
computational purpose, it is necessary though to retain a finite
number of terms by truncating the expansion. First of all, a specific
strategy for enumerating the infinite PC series has to be defined.
This is the scope of the current section.

Given an input random vector :math:`\vect{X}` with prescribed
probability density function (PDF) :math:`f_{\vect{X}}(\vect{x})`, it is
possible to build up a *functional chaos* multivariate basis
:math:`\{\psi_{\idx},\idx \in \NM\}` by tensorization of univariate
functions associated to each marginal input variable.

We define the multi-indices associated to the marginal degrees of the
univariate marginal functions:

.. math::

    \idx = (\alpha_1, \dots, \alpha_{n_X}) \in \mathbb{N}^{n_X}

The component :math:`\alpha_i` defines the marginal degree of the univariate
basis term associated to the variable :math:`X_i`.
For :math:`i = 1, ..., n_X`, let :math:`\pi_{\alpha_i}^{(i)}` be a univariate basis term of marginal degree :math:`\alpha_i` depending on the i-th standardized variable :math:`\xi_i`.
Then, the multivariate basis term :math:`\psi_{\idx}` is defined by the product:

.. math::

    \psi_{\idx} (\vect{\xi}) = \pi_{\alpha_1}^{(1)}(\xi_1) \times \dots \times \pi_{\alpha_{n_X}}^{({n_X})}(\xi_{n_X})

for any :math:`\vect{\xi} \in \mathbb{R}^{n_X}`.

Let us first define the *length* of any multi-index :math:`{\idx} \in {\Nset}^{n_X}` by

.. math::

    |{\idx}| = \sum_{i=1}^{n_X} \alpha_i

When the multi-index represents the marginal degrees of a polynomial,
the length of the multi-index is the total degree of the polynomial.

An enumeration rule is a method to explore this basis.
It is defined by an enumeration function :math:`\tau` from :math:`\Nset` to :math:`\NM`,
which creates a one-to-one mapping between an integer :math:`j` and a multi-index :math:`\idx`.

Mathematically speaking, it is a bijective enumeration function :math:`\tau` defined by:

.. math::

   \begin{array}{llcl}
         \tau \, : & \Nset & \longrightarrow & \NM \\
         &  j & \longmapsto & \idx = \{\alpha_1(j),\dots, \alpha_{n_X}(j)\} \\
       \end{array}

Linear enumeration strategy
^^^^^^^^^^^^^^^^^^^^^^^^^^^

A natural choice to sort the PC basis (i.e. the multi-indices :math:`\idx`) is the
lexicographical order with a constraint of increasing total degree.

The linear enumeration function :math:`\tau : \Nset \longrightarrow \Nset^{n_X}` is a function:

.. math::

    \idx(j) = (\alpha_1(j),\dots, \alpha_{n_X}(j))

for :math:`j \in \Nset` such that:

.. math::

    \idx(0) = (0,\dots,0).

Furthermore, for any :math:`k \in \Nset` and any :math:`j \in \{1, ..., k - 1\}`, we say that:

.. math::

    \idx(j) < \idx(k)

if either (i) the length of :math:`\idx(j)` is strictly lower than :math:`\idx(k)` i.e.:

.. math::

    \left|\idx(j)\right| < \left|\idx(k)\right|

or (ii) the length of :math:`\idx(j)` equal to the length of :math:`\idx(k)` i.e.

.. math::

    \left|\idx(j)\right| = \left|\idx(k)\right|

and there exists :math:`m \in \{1,\dots,n_X\}` such that:

.. math::

    \begin{array}{ll}
    & \alpha_1(j) = \alpha_1(k) \\
    & \alpha_2(j) = \alpha_2(k) \\
    & \vdots \\
    & \alpha_{m - 1}(j) = \alpha_{m - 1}(k) \\
    & \alpha_m(j) < \alpha_m(k).
    \end{array}

The conditions (i) and (ii) ensure that the mapping :math:`\tau` implies a strict order on the set :math:`{\idx} \in {\Nset}^{n_X}`.

The condition (i) states that the two multi-indices :math:`\idx_j` and :math:`\idx_k` are not on the same strata.

The condition (ii) states that, if the two multi-indices :math:`\idx_j` and :math:`\idx_k` are on the same strata,
then at least one of the component (denoted by :math:`m` in the definition) is different while the previous components are equal.

Such an enumeration strategy is illustrated in a two-dimensional case
(i.e. :math:`n_X=2`) in the figure below:

.. plot::

    import matplotlib.pyplot as plt

    # Create the figure
    plt.figure(1, figsize=(4, 4))
    ax = plt.subplot(111)

    # Create the points
    ax.plot([0, 0, 1, 0, 1, 2, 3, 2, 1, 0], [
            0, 1, 0, 2, 1, 0, 0, 1, 2, 3], "o", markersize=9)

    # Create the arrows
    ax.annotate("",
                xy=(0.97, 0), xycoords='data',
                xytext=(0, 0), textcoords='data',
                arrowprops=dict(
                    arrowstyle="-|>", linestyle="dashed", mutation_scale=15,
                                connectionstyle="arc3", color='black'),
                )

    ax.arrow(1, 0, -0.97, 0.97, head_width=0.08, head_length=0.08, fc='k',
            ec='k', length_includes_head=True, linestyle="dashed",)
    ax.arrow(0, 1, 1.97, -0.97, head_width=0.08, head_length=0.08, fc='k',
            ec='k', length_includes_head=True, linestyle="dashed",)
    ax.arrow(2, 0, -1.97, 1.97, head_width=0.08, head_length=0.08, fc='k',
            ec='k', length_includes_head=True, linestyle="dashed",)
    ax.arrow(0, 2, 2.97, -1.97, head_width=0.08, head_length=0.08, fc='k',
            ec='k', length_includes_head=True, linestyle="dashed",)
    ax.arrow(3, 0, -2.97, 2.97, head_width=0.08, head_length=0.08, fc='k',
            ec='k', length_includes_head=True, linestyle="dashed",)
    ax.arrow(0, 3, 1.97, -0.97, head_width=0.08, head_length=0.08, fc='k',
            ec='k', length_includes_head=True, linestyle="dashed",)

    # Annotate points
    ax.annotate('4',
                xy=(1, 1), xycoords='data',
                xytext=(-20, -5), textcoords='offset points', fontsize=16)

    ax.annotate('7',
                xy=(2, 1), xycoords='data',
                xytext=(+15, +0), textcoords='offset points', fontsize=16)

    ax.annotate('8',
                xy=(1, 2), xycoords='data',
                xytext=(+15, +0), textcoords='offset points', fontsize=16)

    # Add labels
    ax.annotate(r'$\tau_1$', xy=(1, 0), xytext=(10, 10), ha='left', va='center',
                xycoords='axes fraction', textcoords='offset points', fontsize=20)

    ax.annotate(r'$\tau_2$', xy=(0, 1), xytext=(0, 10), ha='left', va='center',
                xycoords='axes fraction', textcoords='offset points', fontsize=20)

    # Hide spines
    ax.spines['right'].set_color('none')
    ax.spines['top'].set_color('none')

    # Set spines's position
    ax.xaxis.set_ticks_position('bottom')
    ax.spines['bottom'].set_position(('data', 0))
    ax.yaxis.set_ticks_position('left')
    ax.spines['left'].set_position(('data', 0))

    # Add labels
    plt.xticks([-0.1] + list(range(4)) + [3.2])
    ax.set_xticklabels(('', '$0$', '$1$', '$3$', '$6$', ''), fontsize=20)
    plt.yticks([-0.1] + list(range(4)) + [3.2])
    ax.set_yticklabels(('', '', '$2$', '$5$', '$9$', ''), fontsize=20)

    # Show the figure
    plt.show()


This corresponds to the following enumeration of the multi-indices:

+-------------+-----------------------------------------------+----------------+
| :math:`j`   | :math:`\idx \, = \, \{\alpha_1,\alpha_2\}`    | :math:`|\idx|` |
+=============+===============================================+================+
| :math:`0`   | :math:`\{0,0\}`                               | 0              |
+-------------+-----------------------------------------------+----------------+
| :math:`1`   | :math:`\{0,1\}`                               | 1              |
+-------------+-----------------------------------------------+----------------+
| :math:`2`   | :math:`\{1,0\}`                               | 1              |
+-------------+-----------------------------------------------+----------------+
| :math:`3`   | :math:`\{2,0\}`                               | 2              |
+-------------+-----------------------------------------------+----------------+
| :math:`4`   | :math:`\{1,1\}`                               | 2              |
+-------------+-----------------------------------------------+----------------+
| :math:`5`   | :math:`\{0,2\}`                               | 2              |
+-------------+-----------------------------------------------+----------------+
| :math:`6`   | :math:`\{3,0\}`                               | 3              |
+-------------+-----------------------------------------------+----------------+
| :math:`7`   | :math:`\{2,1\}`                               | 3              |
+-------------+-----------------------------------------------+----------------+
| :math:`8`   | :math:`\{1,2\}`                               | 3              |
+-------------+-----------------------------------------------+----------------+
| :math:`9`   | :math:`\{0,3\}`                               | 3              |
+-------------+-----------------------------------------------+----------------+

Hyperbolic enumeration strategy
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The *hyperbolic* truncation strategy is inspired by the so-called
*sparsity-of-effects principle*, which states that most models are
principally governed by main effects and low-order interactions.
Accordingly, one wishes to define an enumeration strategy which first
selects those multi-indices related to main effects, i.e. with a
reasonably small number of nonzero components, prior to selecting
those associated with higher-order interactions.
For any real number :math:`q` in :math:`(0,1]`, one defines the
:math:`q`-*hyperbolic norm* (or :math:`q`-*norm* for short) of a
multi-index :math:`\idx` by:

  .. math:: \|\idx\|_{q} \, \, = \, \, \left(\sum_{i=1}^{n_X} \; \alpha_i^q \right)^{1/q}

Strictly speaking, :math:`\|\cdot\|_q` is not properly a norm but
rather a *quasi-norm* since it does not satisfy the triangular
inequality. However this abuse of language will be used in the
following. Note that the case :math:`q=1` corresponds to the
definition of the total degree.

Let :math:`\lambda` be a real positive number. One defines the set of
multi-indices with :math:`q`-norm not greater than :math:`\lambda` as
follows:

  .. math::
    :label: eq_q_set

      \cA_{\lambda} \, \, = \, \, \{\idx \in \NM \, : \, \|\idx\|_q \, \leq \lambda \}

Moreover, one defines the *front* of :math:`\cA_{\lambda}` by:

  .. math:: \partial \cA_{\lambda} \, \, = \, \, \left\{\idx \in \cA_{\lambda} \, : \, \exists \; i \; \in \; \{1,\dots,n_X\} \, , \, \, \idx \, + \, \vect{e_i} \, \notin \, \cA_{\lambda} \right\}

where :math:`\vect{e_i}` is a multi-index with a unit :math:`i`-entry
and zero :math:`k`-entries, :math:`k\neq i`.

The idea consists in exploring the space :math:`\NM` by progressively
increasing the :math:`q`-norm of its elements. In this purpose, one
wants to construct an enumeration function that relies upon (1) the
bijection :math:`\tau` defined in the previous paragraph and (2) an
appropriate increasing sequence :math:`(\lambda_n)_{\Nset}` that tends
to infinity. Such a sequence can be used to define a specific
partition of :math:`\NM` into *strata* :math:`(\Delta_n)_{\Nset}`.
Precisely, the enumeration of the multi-indices is achieved by sorting
the elements of :math:`\Delta_n` in ascending order of the
:math:`q`-norm, and then by sorting the possible elements having the
same :math:`q`-norm using the bijection :math:`\tau`. Several examples
of partition are given in the sequel.
*Partition based on the total degree.* We can simply define the
sequence :math:`(\lambda_n)_{\Nset}` as the set of natural integers
:math:`\Nset`. Thus we build up a sequence :math:`(\Delta_n)_{\Nset}`
of strata as follows:

  .. math::

     \left\{
       \begin{array}{l}
         \Delta_0 \, \, = \, \, \{\vect{0}\} \\
         \forall \; n  \geq  1 \, \, , \, \, \Delta_n \, \, = \, \, \cA_{n} \; \setminus \; \cA_{n-1}  \, \, = \, \,
         \{\idx \in \NM \, : \, n - 1 \, < \, \|\idx\|_q \, \leq n \}      \\
       \end{array}
       \right.

The progressive exploration of :math:`\NM` is depicted in the
two-dimensional case for various values of the parameter :math:`q`:

.. plot::

    import openturns as ot
    from matplotlib import pyplot as plt
    from openturns.viewer import View

    nrows=3
    ncols=4

    # coordinates of grid
    grid = ot.Box([5, 5], ot.Interval([0.0]*2, [6.0]*2))
    sample = grid.generate()
    grid_x = sample.getMarginal(0)
    grid_y = sample.getMarginal(1)

    #plt.rc('text', usetex=True)

    q_values = [1.0, 0.75, 0.5]
    fig = plt.figure()
    index = 1
    for i in range(nrows):
        q = q_values[i]
        enumerate = ot.HyperbolicAnisotropicEnumerateFunction(2, q)
        for j in range(ncols):
            ax = fig.add_subplot(nrows, ncols, index, aspect=1.0)
            ax.plot(grid_x, grid_y, 'xr')
            strataIndex = j + 3
            strata_x, strata_y = [], []
            strataCardinal = enumerate.getStrataCumulatedCardinal(strataIndex)
            for ii in range(strataCardinal):
                x = enumerate(ii)
                strata_x.append(x[0])
                strata_y.append(x[1])
            ax.plot(strata_x, strata_y, 'ob')
            ax.set_yticks([])
            #ax.set_title('$||x||_{'+str(q)+'} \leq '+str(strataIndex)+'$')
            ax.set_title('||x||q=' + str(q) + ' < ' + str(strataIndex))
            index += 1
    plt.subplots_adjust(hspace=0.5)
    plt.show()


As expected, the hyperbolic norms penalize the indices associated with
high-order interactions all the more since :math:`q` is low. Note that
setting :math:`q` equal to 1 corresponds to the usual *linear*
enumeration strategy. Then the retained basis terms are located under
a straight line, hence the label *linear enumeration strategy*. In
contrast, when :math:`q < 1`, the retained basis terms are
located under an hyperbola, hence the name *hyperbolic enumeration
strategy*.
*Partition based on disjoint fronts.* Instead of considering the
sequence of natural integers, we define the sequence
:math:`(\lambda_n)_{\Nset}` recursively by:

  .. math::

     \left\{
       \begin{array}{l}
         \lambda_0 \, \, = \, \, 0 \\
         \forall \; n  \geq  1 \, \, , \, \, \lambda_n \, \, = \, \,
         \inf_{\lambda \in \Rset^+} \; \left\{ \lambda \geq \lambda_{n-1} \, \, \mbox{ and } \, \,\partial \cA_{\lambda} \, \cap \, \partial \cA_{\lambda_{n-1}} \, = \, \emptyset \right\}
       \end{array}
       \right.

In other words, :math:`\lambda_n` is the infimum of the real numbers
:math:`\lambda` for which the new front contains only element which do
not belong to the former one. Hence the sequence of strata:

  .. math::

     \left\{
       \begin{array}{l}
         \Delta_0 \, \, = \, \, \{\vect{0}\} \\
         \forall \; n  \geq  1 \, \, , \, \, \Delta_n \, \, = \, \, \cA_{\lambda_n} \; \setminus \; \cA_{\lambda_{n-1}} \\
       \end{array}
       \right.

Note that this partition of :math:`\NM` is finer than the one based
on total degrees, since the cardinality of the strata is smaller.

Anisotropic hyperbolic enumeration strategy
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

One might also consider enumeration strategies based on an
*anisotropic* hyperbolic norm defined by:

  .. math:: \|\idx\|_{\vect{w},q} \, \, = \, \, \left(\sum_{i=1}^{n_X} \; w_i\; \alpha_i^q \right)^{1/q}

where the :math:`w_i`\ ’s are real positive numbers. This would lead
to first select the basis terms depending on a specific subset
of input variables.

In this setup, it is also possible to explore the space :math:`\NM` of
the multi-indices by partitioning it according to one of the two
schemes outlined in the previous paragraph (it is only necessary to
replace the isotropic :math:`q`-norm in :eq:`eq_q_set` with the
:math:`(\vect{w},q)`-anisotropic one).
We may also build up an alternative partition related to the *partial
degree* of the most important variable, i.e. the one associated to the
*smallest* weight :math:`w_i`. Then the sequence
:math:`(\lambda_n)_{\Nset}` is equal to :math:`\Nset` and the sets
:math:`\cA_{\lambda}` are defined by:

  .. math:: \cA_{\lambda} \, \, = \, \, \{\idx \in \NM \, : \, \alpha_{i^*} \, \leq \lambda \} \quad \quad , \quad \quad i^* \, \, = \, \, \mbox{arg} \min \left\{w_i \; , \; 1\leq i \leq n_X \right\}

If strata with larger cardinalities are of interest, one may rather
consider the partial degree of the least significant variable, i.e.
the one associated with the *greatest* weight :math:`w_i`. To this
end, the index :math:`i^*` in the previous formula has to be defined
by:

  .. math:: i^* \, \, = \, \, \mbox{arg} \max \left\{w_i \; , \; 1\leq i \leq n_X \right\}

Infinity norm enumeration strategy
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

One might also consider an enumeration strategies based on the infinite norm:

  .. math:: \|\idx\|_{\infty} \, \, = \, \, \max_{i=1}^{n_X} \; \alpha_i

This corresponds to the following enumeration of the multi-indices:

+-------------+-----------------------------------------------+----------------+
| :math:`j`   | :math:`\idx \, = \, \{\alpha_1,\alpha_2\}`    | :math:`|\idx|` |
+=============+===============================================+================+
| :math:`0`   | :math:`\{0,0\}`                               | 0              |
+-------------+-----------------------------------------------+----------------+
| :math:`1`   | :math:`\{1,0\}`                               | 1              |
+-------------+-----------------------------------------------+----------------+
| :math:`2`   | :math:`\{0,1\}`                               | 1              |
+-------------+-----------------------------------------------+----------------+
| :math:`3`   | :math:`\{1,1\}`                               | 1              |
+-------------+-----------------------------------------------+----------------+
| :math:`4`   | :math:`\{2,0\}`                               | 2              |
+-------------+-----------------------------------------------+----------------+
| :math:`5`   | :math:`\{2,1\}`                               | 2              |
+-------------+-----------------------------------------------+----------------+
| :math:`6`   | :math:`\{0,2\}`                               | 2              |
+-------------+-----------------------------------------------+----------------+
| :math:`7`   | :math:`\{1,2\}`                               | 2              |
+-------------+-----------------------------------------------+----------------+
| :math:`8`   | :math:`\{2,2\}`                               | 2              |
+-------------+-----------------------------------------------+----------------+
| :math:`9`   | :math:`\{3,0\}`                               | 3              |
+-------------+-----------------------------------------------+----------------+

.. topic:: API:

    - See :class:`~openturns.LinearEnumerateFunction`
    - See :class:`~openturns.HyperbolicAnisotropicEnumerateFunction`
    - See :class:`~openturns.NormInfEnumerateFunction`

.. topic:: Examples:

    - See :doc:`/auto_meta_modeling/polynomial_chaos_metamodel/plot_functional_chaos`
    - See :doc:`/auto_meta_modeling/polynomial_chaos_metamodel/plot_enumeratefunction`
    - See :doc:`/auto_meta_modeling/fields_metamodels/plot_fieldfunction_metamodel`

.. topic:: References:

    - [blatman2009]_