1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
|
.. _functional_chaos:
Functional Chaos Expansion
--------------------------
Introduction
~~~~~~~~~~~~
Accounting for the joint probability density function (PDF)
:math:`\mu_{\vect{X}}(\vect{x})` of the input random vector
:math:`\vect{X}`, one seeks the joint PDF of output random vector
:math:`\vect{Y} = g(\vect{X})`. This may be achieved using
Monte Carlo (MC) simulation (see :ref:`monte_carlo_simulation`). However, the MC
method may require a large number of model evaluations, i.e. a great
computational cost, in order to obtain accurate results.
A possible solution to overcome this problem is to project the model
:math:`g` in a suitable functional space, such as
the Hilbert space :math:`L^2(\mu_{\vect{X}})` of square-integrable functions with
respect to :math:`\mu_{\vect{X}}`.
More precisely, we may consider an expansion of the model onto an orthonormal
basis of :math:`L^2(\mu_{\vect{X}})`.
As an example of this type of expansion, one can mention expansions by
wavelets, polynomials, etc.
The principles of the building of a functional chaos expansion are described in the sequel.
Model
~~~~~
We consider the output random vector:
.. math::
\vect{Y} = g(\vect{X})
where :math:`g: \Rset^{n_X} \rightarrow \Rset^{n_Y}` is the model,
:math:`\vect{X}` is the input random vector which distribution is
:math:`\mu_{\vect{X}}`,
:math:`n_X \in \Nset` is the input dimension,
:math:`n_Y \in \Nset` is the output dimension.
We assume that :math:`\vect{Y}` has finite variance i.e.
:math:`g\in L^2(\mu_{\vect{X}})`.
When :math:`n_Y > 1`, the functional chaos algorithm is used on each marginal
of :math:`\vect{Y}`, using the same multivariate orthonormal basis for
all the marginals.
Thus, the method is detailed here for a scalar output :math:`Y` and
:math:`g: \Rset^{n_X} \rightarrow \Rset`.
Iso-probabilistic transformation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Let :math:`T: \Rset^{n_X} \rightarrow \Rset^{n_X}` be an *isoprobabilistic transformation*
(see :ref:`isoprobabilistic_transformation`) such that :math:`\vect{Z} = T(\vect{X}) \sim \mu_{\vect{Z}}`
where :math:`\mu_{\vect{Z}}` is the distribution of the standardized random vector :math:`\vect{Z}`.
The distribution is called the *measure* below.
As we will see soon, this distribution defines the scalar product that defines
the orthogonality property of the functional basis.
Let :math:`h` be the function defined by the equation:
.. math::
h = g \circ T^{-1}.
Therefore :math:`h \in L^2\left(\mu_{\vect{Z}}\right)`.
Hilbert space
~~~~~~~~~~~~~
We introduce the *scalar product*:
.. math::
\scalarproduct{h_1}{h_2}_{L^2\left(\mu_{\vect{Z}}\right)}
= \Expect{h_1(\vect{Z}) h_2(\vect{Z})}
for any :math:`(h_1,h_2) \in L^2\left(\mu_{\vect{Z}}\right)`.
For a continuous random variable, the scalar product is:
.. math::
\scalarproduct{h_1}{h_2}_{L^2\left(\mu_{\vect{Z}}\right)}
& = \int h_1(\vect{z}) h_2(\vect{z})\, \mu_{\vect{Z}}(\vect{z}) d\vect{z}.
For a discrete random variable, the scalar product is:
.. math::
\scalarproduct{h_1}{h_2}_{L^2\left(\mu_{\vect{Z}}\right)}
& = \sum_\vect{z} h_1(\vect{z}) h_2(\vect{z})\, \Prob{\vect{Z} = \vect{z}}.
The associated norm is defined by:
.. math::
\|h\|^2_{L^2(\mu_{\vect{Z}})}
= \Expect{\left(h(\vect{Z})\right)^2}
for any :math:`h \in L^2\left(\mu_{\vect{Z}}\right)`.
Based on this scalar product, the functional space
:math:`L^2\left(\mu_{\vect{Z}}\right)` is a Hilbert space.
Orthonormal basis
~~~~~~~~~~~~~~~~~
In this section, we introduce an orthonormal basis of the
previous Hilbert space.
Let :math:`\left(\psi_k : \Rset^{n_X} \rightarrow \Rset\right)_{k \geq 0}` be
a set of functions.
This set is *orthonormal* with respect to :math:`\mu_{\vect{Z}}` if:
.. math::
:label: orthonorm
\scalarproduct{\psi_k}{\Psi_{\ell}}_{L^2\left(\mu_{\vect{Z}}\right)} = \delta_{k,\ell}
for any :math:`k, \ell \geq 0` where :math:`\delta_{k, \ell}` is the Kronecker symbol:
.. math::
\delta_{k, \ell}
=
\begin{cases}
1 & \textrm{ if } k = \ell, \\
0 & \textrm{otherwise.}
\end{cases}
See :class:`~openturns.StandardDistributionPolynomialFactory` for more details on the available
orthonormal bases.
In the library, we choose a basis :math:`\left(\psi_k\right)_{k \geq 0}` which is orthonormal
with respect to :math:`\mu_{\vect{Z}}`, so that the equation :eq:`orthonorm` is
satisfied.
Furthermore, we require that the first element be:
.. math::
:label: defPsi0
\Psi_0 = 1
The orthogonality of the functions imply:
.. math::
\scalarproduct{\psi_{i}}{\psi_{0}}_{L^2\left(\mu_{\vect{Z}}\right)} = 0
for any non-zero :math:`i`.
The equation :eq:`defPsi0` implies:
.. math::
\Expect{\psi_{i}(\vect{Z})} = \Expect{\Psi_{i}(\vect{Z})\Psi_{0}(\vect{Z})}
= 0
for any :math:`i\neq 0`.
Functional chaos expansion
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The *functional chaos expansion* of *h* is (see [lemaitre2010]_ page 39):
.. math::
h = \sum_{k \geq 0} a_k \psi_k
where :math:`\left(a_k \in \Rset\right)_{k\geq 0}` is a set of coefficients.
We cannot compute an infinite set of coefficients: we can only compute a finite
subset of these.
The *truncated functional chaos expansion* is:
.. math::
\widetilde{h} = \sum_{k = 0}^{P} a_k \psi_k
where :math:`P \in \Nset`.
Thus :math:`\widetilde{h}` is represented by a *finite* subset of coefficients :math:`(a_k)_{k = 0, ..., P}` in a *truncated* basis :math:`\left(\psi_k\right)_{k = 0, ..., P}`.
A specific choice of :math:`P` can be done using one enumeration rule,
as presented in :ref:`enumeration_strategy`.
If the number of coefficients, :math:`P + 1`, is too large,
this can lead to *overfitting*.
This may happen e.g. if the total polynomial order we choose is too large.
In order to limit this effect, one method is to select the coefficients which
best predict the output, as presented in :ref:`polynomial_sparse_least_squares`.
Convergence of the expansion
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In this section, we introduce the conditions which ensures
that the expansion converges to the function.
The orthonormal expansion of any function :math:`h \in L^2\left(\mu_{\vect{Z}}\right)`
converges in norm to :math:`h`, i.e.:
.. math::
\lim_{P \rightarrow \infty} \left\|h -
\sum_{k = 0}^{P} a_k \psi_k\right\|_{L^2\left(\mu_{\vect{Z}}\right)} = 0
if and only if the basis :math:`\left(\psi_k\right)_{k \geq 0}` is a *complete
orthonormal system* (see [sullivan2015]_, page 139, [dahlquist2008]_,
theorem 4.5.16 page 456 and [rudin1987]_, section 4.24 page 85).
In this case, the closure of the vector space spanned by the orthogonal
functions is equal to the whole set of square integrable functions with
respect to :math:`\mu_{\vect{Z}}`:
.. math::
:label: fermeturePn
\overline{\operatorname{span}\left(\left(\psi_k\right)_{k \geq 0}\right)} = L^2\left(\mu_{\vect{Z}}\right).
There are known sufficient conditions which ensure this property.
For example, if the support of :math:`\mu_{\vect{Z}}` is bounded, then
the basis is a complete orthonormal system.
There exists some infinite set of orthonormal polynomials
which are not complete, e.g. those derived from the log-normal distribution
(see [ernst2012]_).
In this case, the expansion may not converge to the function.
Nevertheless, even without any guarantee, it
is possible that the meta model built using the basis
:math:`\left(\psi_k\right)_{k \in \{0, ..., P\}}` may be a good approximation of :math:`h`.
Define and estimate the coefficients
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In this section, we review two equivalent methods to define the coefficients
of the expansion:
- using a least squares problem,
- using integration.
Both methods can be introduced and then discretized using a sample.
The vector of coefficients is the solution of the *linear least-squares problem*:
.. math::
:label: metaModeleh
\vect{a}^\star = \argmin_{\vect{a} \in \Rset^{P + 1}}
\left\| h - \sum_{k = 0}^{P} a_k \psi_k \right\|^2_{L^2\left(\mu_{\vect{Z}}\right)}.
The equation :eq:`metaModeleh` means that the coefficients
:math:`(a_k)_{k = 0, ..., P}` minimize the quadratic error between the model
and the functional approximation.
For more details of the approximation based on least squares, see the
:class:`~openturns.LeastSquaresStrategy` class.
Let us discretize the solution of the linear least squares problem.
Let :math:`n \in \Nset` be the sample size.
Let :math:`\{\vect{x}^{(j)} \in \Rset^{n_x}\}_{j = 1, ..., n}` be an i.i.d.
sample from the random vector :math:`\vect{X}`.
Let :math:`\{\vect{z}^{(j)} = T\left(\vect{x}^{(j)}\right)\}_{j = 1, ..., n}`
be the standardized input sample.
Let :math:`\{y^{(j)} = \model\left(\vect{x}^{(j)}\right)\}_{j = 1, ..., n}`
be the corresponding output sample.
Let :math:`\vect{y} = \Tr{(y^{(1)}, ..., y^{(n)})} \in \Rset^n` be the
vector of output observations of the model.
Let :math:`\mat{\Psi} \in \Rset^{n \times (P + 1)}` be the *design matrix*,
defined by:
.. math::
\mat{\Psi}_{jk} = \psi_k\left(\vect{z}^{(j)}\right)
for :math:`j = 1, ..., n` and :math:`k = 0, ..., P`.
Assume that the design matrix has full rank.
The discretized linear least squares problem is:
.. math::
\widehat{\vect{a}} = \argmin_{\vect{a} \in \Rset^{P + 1}}
\left\| \vect{y} - \mat{\Psi} \vect{a} \right\|^2_2.
The solution is:
.. math::
\widehat{\vect{a}}
= \left(\Tr{\mat{\Psi}} \mat{\Psi}\right)^{-1} \Tr{\mat{\Psi}} \vect{y}.
The choice of basis has a major impact on the conditioning of the
least-squares problem :eq:`metaModeleh`.
Indeed, if the basis :math:`\left(\psi_k\right)_{k \in \{0, ..., P\}}` is
orthonormal, then the design matrix of the least squares problem is
well-conditioned.
The problem can be equivalently solved using the scalar product (see
[dahlquist2008]_ theorem 4.5.13 page 454):
.. math::
:label: scalProd
a_k^\star = \scalarproduct{h}{\psi_k}_{L^2\left(\mu_{\vect{Z}}\right)}
for :math:`k = 0, ..., P`.
These equations express the coefficients of the orthogonal projection of the
function :math:`h` onto the vector space spanned by the orthogonal functions
in the basis.
Since the definition of the scalar product is based on an expectation,
this amounts to approximate an integral using a quadrature rule.
The equation :eq:`scalProd` means that each coefficient :math:`a_k` is the
scalar product of the model with the *k-th* element of the orthonormal basis
:math:`\left(\psi_k\right)_{k \geq 0}`.
For more details on the PCE based on quadrature, see the
:class:`~openturns.IntegrationStrategy` class.
Let us discretize the solution of the problem based on the scalar product.
This can be done by considering a quadrature rule that makes it possible
to approximate the integral.
Let :math:`n \in \Nset` be the sample size.
Let :math:`\{\vect{z}^{(j)} \in \Rset^{n_x}\}_{j = 1, ..., n}`
be the nodes of the quadrature rule and let
:math:`\{w^{(j)} \in \Rset\}_{j = 1, ..., n}` be the weights.
The *quadrature rule* is:
.. math::
\widehat{a}_k = \sum_{j = 1}^n w^{(j)} h\left(\vect{z}^{(j)}\right)
\psi_k\left(\vect{z}^{(j)}\right)
for :math:`k = 0, ..., P`.
Several algorithms are available to compute the coefficients
:math:`(a_k)_{k = 0, ..., P}`:
- see :class:`~openturns.IntegrationExpansion` for an algorithm based on
quadrature,
- see :class:`~openturns.LeastSquaresExpansion` for an algorithm based on the
least squares problem,
- see :class:`~openturns.FunctionalChaosAlgorithm` for an algorithm that
can manage both methods.
The two methods to define the coefficients of the expansion are equivalent:
the solution of the equations :eq:`metaModeleh` and :eq:`scalProd`
produce the same coefficients :math:`(a_k)_{k = 0, ..., P}`.
This is different when we estimate these coefficients based on a sample.
In this discretized framework, the solution of the two methods can be
different.
It can be shown, however, that the limit of the two estimators are equal when
the sample size tends to infinity (see [lemaitre2010]_ eq. 3.48 page 66).
Moreover, the two discretized methods are equivalent if the sample points
satisfy an empirical orthogonality condition (see [lemaitre2010]_ eq. 3.49
page 66).
A step-by-step method
~~~~~~~~~~~~~~~~~~~~~
Three steps are required in order to create a functional chaos algorithm:
- define the multivariate orthonormal basis;
- truncate the multivariate orthonormal basis;
- evaluate the coefficients.
These steps are presented in more detail below.
**Step 1 - Define the multivariate orthonormal basis**: the
multivariate orthonornal basis :math:`\left(\psi_k\right)_{k \geq 0}` is built
as the tensor product of orthonormal univariate families.
The univariate bases may be:
- *polynomials*: the associated distribution :math:`\mu_i` can be continuous
or discrete.
Note that it is possible to build the polynomial family orthonormal to any
arbitrary univariate distribution :math:`\mu_i` under some conditions.
For more details on this basis, see :class:`~openturns.StandardDistributionPolynomialFactory`;
- Haar wavelets: they approximate functions with discontinuities.
For details on this basis, see :class:`~openturns.HaarWaveletFactory`;
- Fourier series: for more details on this basis, see :class:`~openturns.FourierSeriesFactory`.
Furthermore, the numbering of the multivariate orthonormal basis
:math:`\left(\psi_k\right)_{k \geq 0}` is given by an enumerate function
which defines a way to generate the collection of polynomial degrees used
for the univariate polynomials: an enumerate function
represents a bijection :math:`\Nset \rightarrow \Nset^{n_X}`.
See :class:`~openturns.LinearEnumerateFunction` or
:class:`~openturns.HyperbolicAnisotropicEnumerateFunction` for more details
on this topic.
**Step 2 - Truncate the multivariate orthonormal basis**: a
strategy must be chosen for the selection of the different terms of the
multivariate basis. The selected terms are gathered in the subset :math:`\{0, ..., P\}`.
For information about the possible strategies, see :class:`~openturns.FixedStrategy`
and :class:`~openturns.CleaningStrategy`.
**Step 3 - Evaluate the coefficients**: a *projectionStrategy* must be chosen
for the estimation of the coefficients :math:`\left(a_k\right)_{k = 0, ..., P}`.
The meta model
~~~~~~~~~~~~~~
The meta model of *g* can be defined using the isoprobabilistic transformation :math:`T`:
.. math::
:label: metaModeleg
\widetilde{g} = \widetilde{h} \circ T.
More details are available on these topics.
- See :class:`~openturns.StandardDistributionPolynomialFactory` for more details on the
available constructions of the truncated multivariate orthogonal basis
- See :class:`~openturns.FunctionalChaosAlgorithm` for more details on the computation
of the coefficients.
There are many ways to use the functional chaos expansion.
In the next two sections, we present two examples:
- using the expansion as a random vector generator,
- performing the sensitivity analysis of the expansion.
Using the expansion as a random vector generator
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The approximation :math:`\widetilde{h}` can be used to build an efficient
random generator of :math:`Y` based on the random vector :math:`\vect{X}`,
using the equation:
.. math::
\widetilde{Y} = \widetilde{h}(\vect{Z}).
This equation can be used to simulate independent random observations
from the PCE.
This can be done by first simulating independent observations from
the distribution of the standardized random vector :math:`\vect{Z}`,
then by pushing forward these observations through the expansion.
See the :class:`~openturns.FunctionalChaosRandomVector` class
for more details on this topic.
Sensitivity analysis
~~~~~~~~~~~~~~~~~~~~
Assume that the input random vector has independent marginals and
that the basis :math:`\left(\psi_k\right)_{k \geq 0}` is computed using
the tensor product of univariate orthonormal functions.
In that case, the Sobol' indices can easily be deduced from the coefficients
:math:`\left(a_k\right)_{k = 0, ..., P}`.
Please see :class:`~openturns.FunctionalChaosSobolIndices` for more details on this topic.
Polynomial chaos expansion for independent variables
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The library enables one to build the meta model called *polynomial chaos
expansion* based on an orthonormal basis of polynomials.
See :ref:`chaos_basis` for more details on polynomial chaos expansion.
Other chaos expansions for independent variables
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
While the polynomial chaos expansion is a classical method, the functions
in the basis do not necessarily have to be polynomials: provided the functions
are orthogonal with respect to the measure :math:`\mu_{\vect{Z}}`, most of
the theory still holds.
The library enables one to use the Haar wavelet functions or the Fourier series
as orthonormal basis with respect to each margin :math:`\mu_i`.
The Haar wavelets basis is orthonormal with respect to the the :math:`\cU(0,1)` measure (see
:class:`~openturns.HaarWaveletFactory`) and the Fourier series basis is orthonormal with respect to
the :math:`\cU(-\pi, \pi)` measure (see :class:`~openturns.FourierSeriesFactory`).
Some functional chaos expansions for dependent variables
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If the components of the input random vector :math:`\vect{X}` are not
independent, we can use an iso-probabilistic transformation to map :math:`\vect{X}`
into :math:`\vect{Z}` with independent components.
Whatever the dependency in the standardized random vector :math:`\vect{Z}`,
the following multivariate functions are orthonormal with respect to
:math:`\mu_{\vect{Z}}`:
.. math::
\Psi_{\idx}(\vect{z})
= \left( \dfrac{\mu_{Z_1}(z_1) \cdots \mu_{Z_{n_X}}(z_{n_X})}{\mu_{\vect{Z}}(\vect{z})} \right)^{\frac{1}{2}}\;
\prod_{i=1}^{n_X} \pi^{(i)}_{\alpha_{i}}(z_{i})
where :math:`\mu_{Z_i}` is the :math:`i` -th marginal of :math:`\mu_{\vect{Z}}`
and :math:`\pi^{(i)}_{\alpha_{i}}` is the degree :math:`\alpha_i` orthonormal
family of polynomial for the :math:`i`-th marginal.
If the random vector :math:`\vect{Z}` has a non-trivial dependency, the
previous functions are not necessarily polynomials.
Notice that:
.. math::
:label: soizeghanem
\dfrac{\mu_{Z_1}(z_1) \cdots \mu_{Z_{n_X}}(z_{n_X})}{\mu_{\vect{Z}}(\vect{z})}
= \dfrac{1}{c(\vect{z})}
where :math:`c` is the density of the copula of :math:`\vect{Z}`.
Link with classical deterministic polynomial approximation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a deterministic setting (i.e. when the input parameters are
considered to be deterministic), it is of common practice to substitute
the model function :math:`h` by a polynomial approximation over its
whole domain of definition. Actually this approach is
equivalent to:
#. regarding the input parameters as random uniform random variables,
#. expanding any quantity of interest provided by the model onto a PC
expansion made of Legendre polynomials.
.. topic:: API:
- See :class:`~openturns.FunctionalChaosAlgorithm`
- See :class:`~openturns.HaarWaveletFactory`
- See :class:`~openturns.FourierSeriesFactory`
- See :class:`~openturns.SoizeGhanemFactory`
- See :class:`~openturns.OrthogonalUniVariatePolynomialFamily`
- See :class:`~openturns.OrthogonalUniVariatePolynomialFactory`
.. topic:: Examples:
- See :doc:`/auto_meta_modeling/polynomial_chaos_metamodel/plot_functional_chaos`
- See :doc:`/auto_functional_modeling/univariate_functions/plot_createUnivariateFunction`
.. topic:: References:
- [lemaitre2010]_
- [sullivan2015]_
- [xiu2010]_
- [soizeghanem2004]_
- [dahlquist2008]_
- [rudin1987]_
- [ghanem1991]_
|