File: functional_chaos.rst

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (532 lines) | stat: -rw-r--r-- 19,912 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
.. _functional_chaos:

Functional Chaos Expansion
--------------------------

Introduction
~~~~~~~~~~~~

Accounting for the joint probability density function (PDF)
:math:`\mu_{\vect{X}}(\vect{x})` of the input random vector
:math:`\vect{X}`, one seeks the joint PDF of output random vector
:math:`\vect{Y} = g(\vect{X})`. This may be achieved using
Monte Carlo (MC) simulation (see :ref:`monte_carlo_simulation`). However, the MC
method may require a large number of model evaluations, i.e. a great
computational cost, in order to obtain accurate results.

A possible solution to overcome this problem is to project the model
:math:`g` in a suitable functional space, such as
the Hilbert space :math:`L^2(\mu_{\vect{X}})` of square-integrable functions with
respect to :math:`\mu_{\vect{X}}`.
More precisely, we may consider an expansion of the model onto an orthonormal
basis of :math:`L^2(\mu_{\vect{X}})`.
As an example of this type of expansion, one can mention expansions by
wavelets, polynomials, etc.

The principles of the building of a functional chaos expansion are described in the sequel.

Model
~~~~~

We consider the output random vector:

.. math::

    \vect{Y} = g(\vect{X})

where :math:`g: \Rset^{n_X} \rightarrow \Rset^{n_Y}` is the model,
:math:`\vect{X}` is the input random vector which distribution is
:math:`\mu_{\vect{X}}`,
:math:`n_X \in \Nset` is the input dimension,
:math:`n_Y \in \Nset` is the output dimension.
We assume that :math:`\vect{Y}` has finite variance i.e.
:math:`g\in L^2(\mu_{\vect{X}})`.

When :math:`n_Y > 1`, the functional chaos algorithm is used on each marginal
of :math:`\vect{Y}`, using the same multivariate orthonormal basis for
all the marginals.
Thus, the method is detailed here for a scalar output :math:`Y` and
:math:`g: \Rset^{n_X} \rightarrow \Rset`.

Iso-probabilistic transformation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Let :math:`T: \Rset^{n_X} \rightarrow \Rset^{n_X}` be an *isoprobabilistic transformation*
(see :ref:`isoprobabilistic_transformation`) such that :math:`\vect{Z} = T(\vect{X}) \sim \mu_{\vect{Z}}`
where :math:`\mu_{\vect{Z}}` is the distribution of the standardized random vector :math:`\vect{Z}`.
The distribution is called the *measure* below.
As we will see soon, this distribution defines the scalar product that defines
the orthogonality property of the functional basis.
Let :math:`h` be the function defined by the equation:

.. math::
    h = g \circ T^{-1}.

Therefore :math:`h \in L^2\left(\mu_{\vect{Z}}\right)`.

Hilbert space
~~~~~~~~~~~~~

We introduce the *scalar product*:

  .. math::

        \scalarproduct{h_1}{h_2}_{L^2\left(\mu_{\vect{Z}}\right)}
        = \Expect{h_1(\vect{Z}) h_2(\vect{Z})}

for any :math:`(h_1,h_2) \in L^2\left(\mu_{\vect{Z}}\right)`.
For a continuous random variable, the scalar product is:

  .. math::
        \scalarproduct{h_1}{h_2}_{L^2\left(\mu_{\vect{Z}}\right)}
        & =  \int h_1(\vect{z}) h_2(\vect{z})\, \mu_{\vect{Z}}(\vect{z}) d\vect{z}.

For a discrete random variable, the scalar product is:

  .. math::
        \scalarproduct{h_1}{h_2}_{L^2\left(\mu_{\vect{Z}}\right)}
        & = \sum_\vect{z} h_1(\vect{z}) h_2(\vect{z})\, \Prob{\vect{Z} = \vect{z}}.

The associated norm is defined by:

  .. math::

        \|h\|^2_{L^2(\mu_{\vect{Z}})}
        = \Expect{\left(h(\vect{Z})\right)^2}

for any :math:`h \in L^2\left(\mu_{\vect{Z}}\right)`.
Based on this scalar product, the functional space
:math:`L^2\left(\mu_{\vect{Z}}\right)` is a Hilbert space.

Orthonormal basis
~~~~~~~~~~~~~~~~~
In this section, we introduce an orthonormal basis of the
previous Hilbert space.
Let :math:`\left(\psi_k : \Rset^{n_X} \rightarrow \Rset\right)_{k \geq 0}` be
a set of functions.
This set is *orthonormal* with respect to :math:`\mu_{\vect{Z}}` if:

.. math::
   :label: orthonorm

    \scalarproduct{\psi_k}{\Psi_{\ell}}_{L^2\left(\mu_{\vect{Z}}\right)}  =  \delta_{k,\ell}

for any :math:`k, \ell \geq 0` where :math:`\delta_{k, \ell}` is the Kronecker symbol:

.. math::

  \delta_{k, \ell}
  =
  \begin{cases}
  1 & \textrm{ if } k = \ell, \\
  0 & \textrm{otherwise.}
  \end{cases}

See :class:`~openturns.StandardDistributionPolynomialFactory` for more details on the available
orthonormal bases.

In the library, we choose a basis :math:`\left(\psi_k\right)_{k \geq 0}` which is orthonormal
with respect to :math:`\mu_{\vect{Z}}`, so that the equation :eq:`orthonorm` is
satisfied.
Furthermore, we require that the first element be:

  .. math::
    :label: defPsi0

      \Psi_0 = 1

The orthogonality of the functions imply:

  .. math::
      \scalarproduct{\psi_{i}}{\psi_{0}}_{L^2\left(\mu_{\vect{Z}}\right)} = 0

for any non-zero :math:`i`.
The equation :eq:`defPsi0` implies:

  .. math::

       \Expect{\psi_{i}(\vect{Z})} = \Expect{\Psi_{i}(\vect{Z})\Psi_{0}(\vect{Z})}
       = 0

for any :math:`i\neq 0`.

Functional chaos expansion
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The *functional chaos expansion* of *h* is (see [lemaitre2010]_ page 39):

.. math::

    h = \sum_{k \geq 0} a_k \psi_k

where :math:`\left(a_k \in \Rset\right)_{k\geq 0}` is a set of coefficients.
We cannot compute an infinite set of coefficients: we can only compute a finite
subset of these.
The *truncated functional chaos expansion* is:

.. math::

    \widetilde{h} =  \sum_{k = 0}^{P} a_k \psi_k

where :math:`P \in \Nset`.
Thus :math:`\widetilde{h}` is represented by a *finite* subset of coefficients :math:`(a_k)_{k = 0, ..., P}` in a *truncated* basis :math:`\left(\psi_k\right)_{k = 0, ..., P}`.

A specific choice of :math:`P` can be done using one enumeration rule,
as presented in :ref:`enumeration_strategy`.
If the number of coefficients, :math:`P + 1`, is too large,
this can lead to *overfitting*.
This may happen e.g. if the total polynomial order we choose is too large.
In order to limit this effect, one method is to select the coefficients which
best predict the output, as presented in :ref:`polynomial_sparse_least_squares`.


Convergence of the expansion
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In this section, we introduce the conditions which ensures
that the expansion converges to the function.

The orthonormal expansion of any function :math:`h \in L^2\left(\mu_{\vect{Z}}\right)`
converges in norm to :math:`h`, i.e.:

  .. math::
      \lim_{P \rightarrow \infty} \left\|h -
      \sum_{k = 0}^{P} a_k \psi_k\right\|_{L^2\left(\mu_{\vect{Z}}\right)} = 0

if and only if the basis :math:`\left(\psi_k\right)_{k \geq 0}` is a *complete
orthonormal system* (see [sullivan2015]_, page 139, [dahlquist2008]_,
theorem 4.5.16 page 456 and [rudin1987]_, section 4.24 page 85).
In this case, the closure of the vector space spanned by the orthogonal
functions is equal to the whole set of square integrable functions with
respect to :math:`\mu_{\vect{Z}}`:

  .. math::
       :label: fermeturePn

       \overline{\operatorname{span}\left(\left(\psi_k\right)_{k \geq 0}\right)} = L^2\left(\mu_{\vect{Z}}\right).

There are known sufficient conditions which ensure this property.
For example, if the support of :math:`\mu_{\vect{Z}}` is bounded, then
the basis is a complete orthonormal system.

There exists some infinite set of orthonormal polynomials
which are not complete, e.g. those derived from the log-normal distribution
(see [ernst2012]_).
In this case, the expansion may not converge to the function.
Nevertheless, even without any guarantee, it
is possible that the meta model built using the basis
:math:`\left(\psi_k\right)_{k \in \{0, ..., P\}}` may be a good approximation of :math:`h`.

Define and estimate the coefficients
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In this section, we review two equivalent methods to define the coefficients
of the expansion:

- using a least squares problem,
- using integration.

Both methods can be introduced and then discretized using a sample.

The vector of coefficients is the solution of the *linear least-squares problem*:

  .. math::
    :label: metaModeleh

     \vect{a}^\star  = \argmin_{\vect{a} \in \Rset^{P + 1}}
     \left\| h - \sum_{k = 0}^{P} a_k \psi_k \right\|^2_{L^2\left(\mu_{\vect{Z}}\right)}.

The equation :eq:`metaModeleh` means that the coefficients
:math:`(a_k)_{k = 0, ..., P}` minimize the quadratic error between the model
and the functional approximation.
For more details of the approximation based on least squares, see the
:class:`~openturns.LeastSquaresStrategy` class.

Let us discretize the solution of the linear least squares problem.
Let :math:`n \in \Nset` be the sample size.
Let :math:`\{\vect{x}^{(j)} \in \Rset^{n_x}\}_{j = 1, ..., n}` be an i.i.d.
sample from the random vector :math:`\vect{X}`.
Let :math:`\{\vect{z}^{(j)} = T\left(\vect{x}^{(j)}\right)\}_{j = 1, ..., n}`
be the standardized input sample.
Let :math:`\{y^{(j)} = \model\left(\vect{x}^{(j)}\right)\}_{j = 1, ..., n}`
be the corresponding output sample.
Let :math:`\vect{y} = \Tr{(y^{(1)}, ..., y^{(n)})} \in \Rset^n` be the
vector of output observations of the model.
Let :math:`\mat{\Psi} \in \Rset^{n \times (P + 1)}` be the *design matrix*,
defined by:

.. math::

    \mat{\Psi}_{jk} = \psi_k\left(\vect{z}^{(j)}\right)

for :math:`j = 1, ..., n` and :math:`k = 0, ..., P`.
Assume that the design matrix has full rank.
The discretized linear least squares problem is:

.. math::

     \widehat{\vect{a}} = \argmin_{\vect{a} \in \Rset^{P + 1}}
     \left\| \vect{y} - \mat{\Psi} \vect{a} \right\|^2_2.

The solution is:

.. math::

    \widehat{\vect{a}}
    = \left(\Tr{\mat{\Psi}} \mat{\Psi}\right)^{-1} \Tr{\mat{\Psi}} \vect{y}.

The choice of basis has a major impact on the conditioning of the
least-squares problem :eq:`metaModeleh`.
Indeed, if the basis :math:`\left(\psi_k\right)_{k \in \{0, ..., P\}}` is
orthonormal, then the design matrix of the least squares problem is
well-conditioned.

The problem can be equivalently solved using the scalar product (see
[dahlquist2008]_ theorem 4.5.13 page 454):

.. math::
    :label: scalProd

    a_k^\star = \scalarproduct{h}{\psi_k}_{L^2\left(\mu_{\vect{Z}}\right)}

for :math:`k = 0, ..., P`.
These equations express the coefficients of the orthogonal projection of the
function :math:`h` onto the vector space spanned by the orthogonal functions
in the basis.
Since the definition of the scalar product is based on an expectation,
this amounts to approximate an integral using a quadrature rule.

The equation :eq:`scalProd` means that each coefficient :math:`a_k` is the
scalar product of the model with the *k-th* element of the orthonormal basis
:math:`\left(\psi_k\right)_{k \geq 0}`.
For more details on the PCE based on quadrature, see the
:class:`~openturns.IntegrationStrategy` class.

Let us discretize the solution of the problem based on the scalar product.
This can be done by considering a quadrature rule that makes it possible
to approximate the integral.
Let :math:`n \in \Nset` be the sample size.
Let :math:`\{\vect{z}^{(j)} \in \Rset^{n_x}\}_{j = 1, ..., n}`
be the nodes of the quadrature rule and let
:math:`\{w^{(j)} \in \Rset\}_{j = 1, ..., n}` be the weights.
The *quadrature rule* is:

.. math::

    \widehat{a}_k = \sum_{j = 1}^n w^{(j)} h\left(\vect{z}^{(j)}\right)
    \psi_k\left(\vect{z}^{(j)}\right)

for :math:`k = 0, ..., P`.

Several algorithms are available to compute the coefficients
:math:`(a_k)_{k = 0, ..., P}`:

- see :class:`~openturns.IntegrationExpansion` for an algorithm based on
  quadrature,
- see :class:`~openturns.LeastSquaresExpansion` for an algorithm based on the
  least squares problem,
- see :class:`~openturns.FunctionalChaosAlgorithm` for an algorithm that
  can manage both methods.

The two methods to define the coefficients of the expansion are equivalent:
the solution of the equations :eq:`metaModeleh` and :eq:`scalProd`
produce the same coefficients :math:`(a_k)_{k = 0, ..., P}`.
This is different when we estimate these coefficients based on a sample.
In this discretized framework, the solution of the two methods can be
different.
It can be shown, however, that the limit of the two estimators are equal when
the sample size tends to infinity (see [lemaitre2010]_ eq. 3.48 page 66).
Moreover, the two discretized methods are equivalent if the sample points
satisfy an empirical orthogonality condition (see [lemaitre2010]_ eq. 3.49
page 66).

A step-by-step method
~~~~~~~~~~~~~~~~~~~~~

Three steps are required in order to create a functional chaos algorithm:

- define the multivariate orthonormal basis;
- truncate the multivariate orthonormal basis;
- evaluate the coefficients.

These steps are presented in more detail below.

**Step 1 - Define the multivariate orthonormal basis**: the
multivariate orthonornal basis :math:`\left(\psi_k\right)_{k \geq 0}` is built
as the tensor product of orthonormal univariate families.

The univariate bases may be:

- *polynomials*: the associated distribution :math:`\mu_i` can be continuous
  or discrete.
  Note that it is possible to build the polynomial family orthonormal to any
  arbitrary univariate distribution :math:`\mu_i` under some conditions.
  For more details on this basis, see :class:`~openturns.StandardDistributionPolynomialFactory`;

- Haar wavelets: they approximate functions with discontinuities.
  For details on this basis, see :class:`~openturns.HaarWaveletFactory`;

- Fourier series: for more details on this basis, see :class:`~openturns.FourierSeriesFactory`.

Furthermore, the numbering of the multivariate orthonormal basis
:math:`\left(\psi_k\right)_{k \geq 0}` is given by an enumerate function
which defines a way to generate the collection of polynomial degrees used
for the univariate polynomials: an enumerate function
represents a bijection :math:`\Nset \rightarrow \Nset^{n_X}`.
See :class:`~openturns.LinearEnumerateFunction` or
:class:`~openturns.HyperbolicAnisotropicEnumerateFunction` for more details
on this topic.

**Step 2 - Truncate the multivariate orthonormal basis**: a
strategy must be chosen for the selection of the different terms of the
multivariate basis. The selected terms are gathered in the subset :math:`\{0, ..., P\}`.
For information about the possible strategies, see :class:`~openturns.FixedStrategy`
and :class:`~openturns.CleaningStrategy`.

**Step 3 -  Evaluate the coefficients**: a *projectionStrategy* must be chosen
for the estimation of the coefficients :math:`\left(a_k\right)_{k = 0, ..., P}`.

The meta model
~~~~~~~~~~~~~~

The meta model of *g* can be defined using the isoprobabilistic transformation :math:`T`:

.. math::
    :label: metaModeleg

    \widetilde{g} = \widetilde{h} \circ T.

More details are available on these topics.

- See :class:`~openturns.StandardDistributionPolynomialFactory` for more details on the
  available constructions of the truncated multivariate orthogonal basis

- See :class:`~openturns.FunctionalChaosAlgorithm` for more details on the computation
  of the coefficients.

There are many ways to use the functional chaos expansion.
In the next two sections, we present two examples:

- using the expansion as a random vector generator,
- performing the sensitivity analysis of the expansion.

Using the expansion as a random vector generator
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The approximation :math:`\widetilde{h}` can be used to build an efficient
random generator of :math:`Y` based on the random vector :math:`\vect{X}`,
using the equation:

.. math::

    \widetilde{Y} = \widetilde{h}(\vect{Z}).

This equation can be used to simulate independent random observations
from the PCE.
This can be done by first simulating independent observations from
the distribution of the standardized random vector :math:`\vect{Z}`,
then by pushing forward these observations through the expansion.
See the :class:`~openturns.FunctionalChaosRandomVector` class
for more details on this topic.


Sensitivity analysis
~~~~~~~~~~~~~~~~~~~~
Assume that the input random vector has independent marginals and
that the basis :math:`\left(\psi_k\right)_{k \geq 0}` is computed using
the tensor product of univariate orthonormal functions.
In that case, the Sobol' indices can easily be deduced from the coefficients
:math:`\left(a_k\right)_{k = 0, ..., P}`.
Please see :class:`~openturns.FunctionalChaosSobolIndices` for more details on this topic.

Polynomial chaos expansion for independent variables
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The library enables one to build the meta model called *polynomial chaos
expansion* based on an orthonormal basis of polynomials.
See :ref:`chaos_basis` for more details on polynomial chaos expansion.

Other chaos expansions for independent variables
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

While the polynomial chaos expansion is a classical method, the functions
in the basis do not necessarily have to be polynomials: provided the functions
are orthogonal with respect to the measure :math:`\mu_{\vect{Z}}`, most of
the theory still holds.
The library enables one to use the Haar wavelet functions or the Fourier series
as orthonormal basis with respect to each margin :math:`\mu_i`.
The Haar wavelets basis is orthonormal with respect to the the :math:`\cU(0,1)` measure (see
:class:`~openturns.HaarWaveletFactory`) and the Fourier series basis is orthonormal with respect to
the :math:`\cU(-\pi, \pi)` measure (see :class:`~openturns.FourierSeriesFactory`).


Some functional chaos expansions for dependent variables
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If the components of the input random vector :math:`\vect{X}` are not
independent, we can use an iso-probabilistic transformation to map :math:`\vect{X}`
into :math:`\vect{Z}` with independent components.

Whatever the dependency in the standardized random vector :math:`\vect{Z}`,
the following multivariate functions are orthonormal with respect to
:math:`\mu_{\vect{Z}}`:

  .. math::

      \Psi_{\idx}(\vect{z})
      = \left( \dfrac{\mu_{Z_1}(z_1) \cdots \mu_{Z_{n_X}}(z_{n_X})}{\mu_{\vect{Z}}(\vect{z})} \right)^{\frac{1}{2}}\;
      \prod_{i=1}^{n_X} \pi^{(i)}_{\alpha_{i}}(z_{i})


where :math:`\mu_{Z_i}` is the :math:`i` -th marginal of :math:`\mu_{\vect{Z}}`
and :math:`\pi^{(i)}_{\alpha_{i}}` is the degree :math:`\alpha_i` orthonormal
family of polynomial for the :math:`i`-th marginal.
If the random vector :math:`\vect{Z}` has a non-trivial dependency, the
previous functions are not necessarily polynomials.
Notice that:

  .. math::
    :label: soizeghanem

     \dfrac{\mu_{Z_1}(z_1) \cdots \mu_{Z_{n_X}}(z_{n_X})}{\mu_{\vect{Z}}(\vect{z})}
     = \dfrac{1}{c(\vect{z})}


where :math:`c` is the density of the copula of :math:`\vect{Z}`.

Link with classical deterministic polynomial approximation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In a deterministic setting (i.e. when the input parameters are
considered to be deterministic), it is of common practice to substitute
the model function :math:`h` by a polynomial approximation over its
whole domain of definition. Actually this approach is
equivalent to:

#. regarding the input parameters as random uniform random variables,

#. expanding any quantity of interest provided by the model onto a PC
   expansion made of Legendre polynomials.

.. topic:: API:

    - See :class:`~openturns.FunctionalChaosAlgorithm`
    - See :class:`~openturns.HaarWaveletFactory`
    - See :class:`~openturns.FourierSeriesFactory`
    - See :class:`~openturns.SoizeGhanemFactory`
    - See :class:`~openturns.OrthogonalUniVariatePolynomialFamily`
    - See :class:`~openturns.OrthogonalUniVariatePolynomialFactory`


.. topic:: Examples:

    - See :doc:`/auto_meta_modeling/polynomial_chaos_metamodel/plot_functional_chaos`
    - See :doc:`/auto_functional_modeling/univariate_functions/plot_createUnivariateFunction`


.. topic:: References:

    - [lemaitre2010]_
    - [sullivan2015]_
    - [xiu2010]_
    - [soizeghanem2004]_
    - [dahlquist2008]_
    - [rudin1987]_
    - [ghanem1991]_