1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
|
.. _taylor_expansion:
Taylor expansion
----------------
Let :math:`h: \Rset^{\inputDim} \rightarrow \Rset^q` be a twice differentiable mapping.
First-order Taylor expansion
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The first-order Taylor expansion of :math:`h` at the point :math:`\ux_0` is the function
:math:`\widetilde{h}: \Rset^{\inputDim} \rightarrow \Rset^q` defined for each marginal function
:math:`h_k` of :math:`h` by the equation:
.. math::
\widetilde{h}_k(\ux) = h_k(\ux_0) + \sum_{i=1}^{\inputDim} \left(\frac{\partial h_k}{\partial x_i}\right)(\ux_0)\left(x_i - x_{0,i} \right)
for :math:`k \in \{1, ..., q\}` which can be written as:
.. math::
\widetilde{h}(\ux) = h(\ux_0) + \mat{L} (\ux-\ux_0)
where :math:`\mat{L} = (L_{ki})_{1 \leq k \leq \inputDim, 1\leq i \leq \inputDim}` is the Jacobian
matrix evaluated at the point :math:`\ux_0`:
.. math::
L_{ki} = \left(\frac{\partial h_k}{\partial x_i}\right)(\ux_0)
for :math:`i \in \{1, ..., \inputDim\}` and :math:`j \in \{1, ..., \inputDim\}`.
Second-order Taylor expansion
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The second-order Taylor expansion of :math:`h` at the point :math:`\ux_0` is the function
:math:`\widetilde{h}: \Rset^{\inputDim} \rightarrow \Rset^q` defined for each marginal function
:math:`h_k` of :math:`h` by the equation:
.. math::
\widetilde{h}_k(\ux) = h_k(\ux_0) + \sum_{i=1}^{\inputDim} \left(\frac{\partial h_k}{\partial x_i}\right)(\ux_0)
\left(x_i - x_{0,i} \right) + \frac{1}{2} \sum_{i,j = 1}^\inputDim \left( \frac{\partial^2 h_k}{\partial x_i
\partial x_j}\right)(\ux_0)(x_i-x_{0,i})(x_j-x_{0,j})
which can be written as:
.. math::
\widetilde{h}(\ux) = h(\ux_0) + \mat{L} (\ux-\ux_0) + \frac{1}{2} \left\langle \left\langle\mat{Q},\ux-
\ux_0 \right \rangle, \ux-\ux_0 \right \rangle
where :math:`\mat{Q} = (Q_{ijk})_{1 \leq i,j \leq \inputDim, 1\leq k \leq \inputDim}` is the Hessian tensor of order 3 evaluated at :math:`\ux_0`:
.. math::
Q_{ijk} = \frac{\partial^2 h_k}{\partial x_i \partial x_j} (\ux_0)
for :math:`i, j \in \{1, ..., \inputDim\}` and :math:`k \in \{1, ..., \inputDim\}`.
The first and second order Taylor expansions are used in the following cases:
- to evaluate the importance factors of the input point on the output: refer to :ref:`taylor_importance_factors`,
- to get an approximation of the mean and the variance of the output: refer to :ref:`taylor_expansion_moments`.
.. topic:: API:
- See :class:`~openturns.LinearTaylor`
- See :class:`~openturns.QuadraticTaylor`
.. topic:: Examples:
- See :doc:`/auto_meta_modeling/general_purpose_metamodels/plot_taylor_approximation`
|