1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
.. _process_definitions:
Stochastic process definitions
------------------------------
Notations
~~~~~~~~~
In this document, we note:
- :math:`X: \Omega \times\cD \rightarrow \Rset^{\inputDim}` a multivariate
stochastic process of dimension :math:`d`, where
:math:`\omega \in \Omega` is an event, :math:`\cD` is a domain of
:math:`\Rset^n`, :math:`\vect{t}\in \cD` is a multivariate index and
:math:`X(\omega, \vect{t}) \in \Rset^{\inputDim}`;
- :math:`X_{\vect{t}}: \Omega \rightarrow \Rset^{\inputDim}` the random variable
at index :math:`\vect{t} \in \cD` defined by
:math:`X_{\vect{t}}(\omega)=X(\omega, \vect{t})`;
- :math:`X(\omega): \cD \rightarrow \Rset^{\inputDim}` a realization of the
process :math:`X`, for a given :math:`\omega \in \Omega` defined by
:math:`X(\omega)(\vect{t})=X(\omega, \vect{t})`.
If :math:`n=1`, :math:`t` may be interpreted as a time stamp to
recover the classical notation of a stochastic process.
If the process is a second order process, we note:
- :math:`m : \cD \rightarrow \Rset^{\inputDim}` its *mean function*, defined by
:math:`m(\vect{t})=\Expect{X_{\vect{t}}}`,
- :math:`C : \cD \times \cD \rightarrow \cM_{d \times d}(\Rset)` its
*covariance function*, defined by:
.. math::
C(\vect{s}, \vect{t})
& := \Cov{X_{\vect{s}}, X_{\vect{t}}} \\
& \; = \Expect{(X_{\vect{s}} - m(\vect{s}))(X_{\vect{t}} - m(\vect{t}))^t},
- :math:`R : \cD \times \cD \rightarrow \mathcal{M}_{d \times d}(\Rset)`
its *correlation function*, defined for all
:math:`(\vect{s}, \vect{t})`, by :math:`R(\vect{s}, \vect{t})` such
that for all :math:`(i,j)`:
.. math::
R_{ij}(\vect{s}, \vect{t})
& := \Cor{X_{\vect{s}}, X_{\vect{t}}} \\
& \; = \frac{C_{ij}(\vect{s}, \vect{t})}{\sqrt{C_{ij}(\vect{s}, \vect{s}) C_{ij}(\vect{t}, \vect{t})}}.
We recall here some useful definitions.
Spatial (temporal) and Stochastic Mean
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The *spatial mean* of the process :math:`X` is the function
:math:`m: \Omega \rightarrow \Rset^{\inputDim}` defined by:
.. math::
:label: spatMean
\displaystyle m(\omega)=\frac{1}{|\cD|} \int_{\cD} X(\omega)(\vect{t})\, d\vect{t}
If :math:`n=1` and if the mesh is a regular grid
:math:`(t_0, \dots, t_{N-1})`, then the spatial mean corresponds to the
*temporal mean* defined by:
.. math::
:label: tempMean
m(\omega) = \frac{1}{t_{N-1} - t_0} \int_{t_0}^{t_{N-1}}X(\omega)(t) \, dt
The spatial mean is estimated from one realization of the process (see
the use case on Field or Time series).
The *stochastic mean* of the process :math:`X` is the function
:math:`g: \cD \rightarrow \Rset^{\inputDim}` defined by:
.. math::
:label: stocMean
\displaystyle g(\vect{t}) = \Expect{X_{\vect{t}}}
The stochastic mean is estimated from a sample of realizations of the
process (see the use case on the Process sample).
For an *ergodic process*, the stochastic mean and the spatial mean are
equal and constant (equal to the constant vector noted
:math:`\vect{c}`):
.. math::
:label: ergodic
\forall \omega\in \Omega, \, \forall \vect{t} \in \cM, \, m(\omega)= g(\vect{t}) = \vect{c}
Normal process
~~~~~~~~~~~~~~
A stochastic process is *normal* if all its finite
dimensional joint distributions are normal, which means that for all
:math:`k \in \Nset` and :math:`I_k \in \Nset^*`, with
:math:`\mathrm{card} I_k = k`, there exist
:math:`\vect{m}_1,\dots,\vect{m}_k\in\Rset^{\inputDim}` and
:math:`\mat{C}_{1,\dots,k}\in\mathcal{M}_{k\inputDim,k\inputDim}(\Rset)` such that:
.. math::
\Expect{\exp\left\{i\vect{X}_{I_k}^t \vect{U}_{k} \right\}} =
\exp{\left\{i\vect{U}_{k}^t\vect{M}_{k}-\frac{1}{2}\vect{U}_{k}^t\mat{C}_{1,\dots,k}\vect{U}_{k}\right\}}
where
:math:`\vect{X}_{I_k}^t = (X_{\vect{t}_1}^t, \hdots, X_{\vect{t}_k}^t)`,
:math:`\vect{U}_{k}^t = (\vect{u}_{1}^t, \hdots, \vect{u}_{k}^t)` and
:math:`\vect{M}_{k}^t = (\vect{m}_{1}^t, \hdots, \vect{m}_{k}^t)` and
:math:`\mat{C}_{1,\dots,k}` is the symmetric matrix:
.. math::
:label: covMatrix
\mat{C}_{1,\dots,k} = \left(
\begin{array}{cccc}
C(\vect{t}_1, \vect{t}_1) &C(\vect{t}_1, \vect{t}_2) & \hdots & C(\vect{t}_1, \vect{t}_{k}) \\
\hdots & C(\vect{t}_2, \vect{t}_2) & \hdots & C(\vect{t}_2, \vect{t}_{k}) \\
\hdots & \hdots & \hdots & \hdots \\
\hdots & \hdots & \hdots & C(\vect{t}_{k}, \vect{t}_{k})
\end{array}
\right)
A normal process is entirely defined by its mean function :math:`m`
and its covariance function :math:`C` (or correlation function
:math:`R`).
Weak stationarity (second order stationarity)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A process
:math:`X` is *weakly stationary* or *stationary of second order* if
its mean function is constant and its covariance function is invariant
by translation:
.. math::
:label: stat2order
\forall (\vect{s},\vect{t}) \in \cD, & \, m(\vect{t}) = m(\vect{s}) \\
\forall (\vect{s},\vect{t},\vect{h}) \in \cD, & \, C(\vect{s}, \vect{s}+\vect{h}) =C(\vect{t}, \vect{t}+\vect{h})
We note :math:`C^{stat}(\vect{\tau})` for
:math:`C(\vect{s}, \vect{s}+\vect{\tau})` as this quantity does not
depend on :math:`\vect{s}`.
In the continuous case, :math:`\cD` must be equal to
:math:`\Rset^n`\ as it is invariant by any translation. In the
discrete case, :math:`\cD` is a lattice
:math:`\mathcal{L}=(\delta_1 \Zset \times \dots \times \delta_n \Zset)`
where :math:`\forall i, \delta_i >0`.
Stationarity
~~~~~~~~~~~~
A process :math:`X` is *stationary* if its
distribution is invariant by translation: :math:`\forall k \in \Nset`,
:math:`\forall (\vect{t}_1, \dots, \vect{t}_k) \in \cD`,
:math:`\forall \vect{h}\in \Rset^n`, we have:
.. math::
:label: statGen
\forall k \in \Nset, \, \forall (\vect{t}_1, \dots, \vect{t}_k) \in \cD, \, \forall \vect{h}\in \Rset^n, \, (X_{\vect{t}_1}, \dots, X_{\vect{t}_k}) \stackrel{\mathcal{D}}{=} (X_{\vect{t}_1+\vect{h}}, \dots, X_{\vect{t}_k+\vect{h}})
Spectral density function
~~~~~~~~~~~~~~~~~~~~~~~~~
If :math:`X` is a zero-mean weakly
stationary continuous process and if for all :math:`(i,j)`,
:math:`C^{stat}_{i,j} : \Rset^n \rightarrow \Rset^n` is
:math:`\cL^1(\Rset^n)` (ie
:math:`\int_{\Rset^n} |C^{stat}_{i,j}(\vect{\tau})|\, d\vect{\tau}\, < +\infty`),
we define the *bilateral spectral density function*
:math:`S : \Rset^n \rightarrow \cH^+(\inputDim)` where
:math:`\mathcal{H}^+(\inputDim) \in \mathcal{M}_d(\Cset)` is the set of
:math:`\inputDim`-dimensional positive definite hermitian matrices, as the
Fourier transform of the covariance function :math:`C^{stat}`:
.. math::
:label: specdensFunc
\forall \vect{f} \in \Rset^n, \,S(\vect{f}) = \int_{\Rset^n}\exp\left\{ -2i\pi <\vect{f},\vect{\tau}> \right\} C^{stat}(\vect{\tau})\, d\vect{\tau}
Furthermore, if for all :math:`(i,j)`,
:math:`S_{i,j}: \Rset^n \rightarrow \Cset` is :math:`\cL^1(\Cset)` (ie
:math:`\int_{\Rset^n} |S_{i,j}(\vect{f})|\, d\vect{f}\, < +\infty`),
:math:`C^{stat}` may be evaluated from :math:`S` as follows:
.. math::
:label: cspectransform
C^{stat}(\vect{\tau}) = \int_{\Rset^n}\exp\left\{ 2i\pi <\vect{f}, \vect{\tau}> \right\}S(\vect{f})\, d\vect{f}
In the discrete case, the spectral density is defined for a zero-mean
weakly stationary process, where
:math:`\cD=(\delta_1 \Zset \times \dots \times \delta_n \Zset)` with
:math:`\forall i, \delta_i >0` and where the previous integrals are
replaced by sums.
|