File: process_definitions.rst

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (199 lines) | stat: -rw-r--r-- 7,467 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
.. _process_definitions:

Stochastic process definitions
------------------------------

Notations
~~~~~~~~~

In this document, we note:

-  :math:`X: \Omega \times\cD \rightarrow \Rset^{\inputDim}` a multivariate
   stochastic process of dimension :math:`d`, where
   :math:`\omega \in \Omega` is an event, :math:`\cD` is a domain of
   :math:`\Rset^n`, :math:`\vect{t}\in \cD` is a multivariate index and
   :math:`X(\omega, \vect{t}) \in \Rset^{\inputDim}`;

-  :math:`X_{\vect{t}}: \Omega \rightarrow \Rset^{\inputDim}` the random variable
   at index :math:`\vect{t} \in \cD` defined by
   :math:`X_{\vect{t}}(\omega)=X(\omega, \vect{t})`;

-  :math:`X(\omega): \cD  \rightarrow \Rset^{\inputDim}` a realization of the
   process :math:`X`, for a given :math:`\omega \in \Omega` defined by
   :math:`X(\omega)(\vect{t})=X(\omega, \vect{t})`.

If :math:`n=1`, :math:`t` may be interpreted as a time stamp to
recover the classical notation of a stochastic process.
If the process is a second order process, we note:

-  :math:`m : \cD \rightarrow  \Rset^{\inputDim}` its *mean function*, defined by
   :math:`m(\vect{t})=\Expect{X_{\vect{t}}}`,

-  :math:`C : \cD \times \cD \rightarrow  \cM_{d \times d}(\Rset)` its
   *covariance function*, defined by:

.. math::
   C(\vect{s}, \vect{t})
   & := \Cov{X_{\vect{s}}, X_{\vect{t}}} \\
   & \; = \Expect{(X_{\vect{s}} - m(\vect{s}))(X_{\vect{t}} - m(\vect{t}))^t},

-  :math:`R : \cD \times \cD \rightarrow  \mathcal{M}_{d \times d}(\Rset)`
   its *correlation function*, defined for all
   :math:`(\vect{s}, \vect{t})`, by :math:`R(\vect{s}, \vect{t})` such
   that for all :math:`(i,j)`:

.. math::
   R_{ij}(\vect{s}, \vect{t})
   & := \Cor{X_{\vect{s}}, X_{\vect{t}}} \\
   & \; = \frac{C_{ij}(\vect{s}, \vect{t})}{\sqrt{C_{ij}(\vect{s}, \vect{s}) C_{ij}(\vect{t}, \vect{t})}}.

We recall here some useful definitions.

Spatial (temporal) and Stochastic Mean
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The *spatial mean* of the process :math:`X` is the function
:math:`m: \Omega \rightarrow \Rset^{\inputDim}` defined by:

.. math::
  :label: spatMean

    \displaystyle m(\omega)=\frac{1}{|\cD|} \int_{\cD} X(\omega)(\vect{t})\, d\vect{t}

If :math:`n=1` and if the mesh is a regular grid
:math:`(t_0, \dots, t_{N-1})`, then the spatial mean corresponds to the
*temporal mean* defined by:

.. math::
  :label: tempMean

    m(\omega) =  \frac{1}{t_{N-1} - t_0} \int_{t_0}^{t_{N-1}}X(\omega)(t) \, dt

The spatial mean is estimated from one realization of the process (see
the use case on Field or Time series).
The *stochastic mean* of the process :math:`X` is the function
:math:`g: \cD \rightarrow \Rset^{\inputDim}` defined by:

.. math::
  :label: stocMean

    \displaystyle g(\vect{t}) = \Expect{X_{\vect{t}}}

The stochastic mean is estimated from a sample of realizations of the
process (see the use case on the Process sample).
For an *ergodic process*, the stochastic mean and the spatial mean are
equal and constant (equal to the constant vector noted
:math:`\vect{c}`):

.. math::
  :label: ergodic

    \forall \omega\in \Omega, \, \forall \vect{t} \in \cM, \, m(\omega)=  g(\vect{t})  = \vect{c}

Normal process
~~~~~~~~~~~~~~

A stochastic process is *normal* if all its finite
dimensional joint distributions are normal, which means that for all
:math:`k  \in  \Nset` and :math:`I_k \in \Nset^*`, with
:math:`\mathrm{card} I_k = k`, there exist
:math:`\vect{m}_1,\dots,\vect{m}_k\in\Rset^{\inputDim}` and
:math:`\mat{C}_{1,\dots,k}\in\mathcal{M}_{k\inputDim,k\inputDim}(\Rset)` such that:

.. math::

     \Expect{\exp\left\{i\vect{X}_{I_k}^t \vect{U}_{k}  \right\}} =
     \exp{\left\{i\vect{U}_{k}^t\vect{M}_{k}-\frac{1}{2}\vect{U}_{k}^t\mat{C}_{1,\dots,k}\vect{U}_{k}\right\}}

where
:math:`\vect{X}_{I_k}^t = (X_{\vect{t}_1}^t, \hdots, X_{\vect{t}_k}^t)`,
:math:`\vect{U}_{k}^t = (\vect{u}_{1}^t, \hdots, \vect{u}_{k}^t)` and
:math:`\vect{M}_{k}^t = (\vect{m}_{1}^t, \hdots, \vect{m}_{k}^t)` and
:math:`\mat{C}_{1,\dots,k}` is the symmetric matrix:

.. math::
  :label: covMatrix

     \mat{C}_{1,\dots,k} = \left(
     \begin{array}{cccc}
       C(\vect{t}_1, \vect{t}_1) &C(\vect{t}_1, \vect{t}_2) & \hdots & C(\vect{t}_1, \vect{t}_{k}) \\
       \hdots & C(\vect{t}_2, \vect{t}_2)  & \hdots & C(\vect{t}_2, \vect{t}_{k}) \\
       \hdots & \hdots & \hdots & \hdots \\
       \hdots & \hdots & \hdots & C(\vect{t}_{k}, \vect{t}_{k})
     \end{array}
     \right)

A normal process is entirely defined by its mean function :math:`m`
and its covariance function :math:`C` (or correlation function
:math:`R`).

Weak stationarity (second order stationarity)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A process
:math:`X` is *weakly stationary* or *stationary of second order* if
its mean function is constant and its covariance function is invariant
by translation:

.. math::
  :label: stat2order

    \forall  (\vect{s},\vect{t}) \in \cD, &   \, m(\vect{t})   =  m(\vect{s}) \\
    \forall (\vect{s},\vect{t},\vect{h}) \in \cD,  &  \, C(\vect{s}, \vect{s}+\vect{h})  =C(\vect{t}, \vect{t}+\vect{h})

We note :math:`C^{stat}(\vect{\tau})` for
:math:`C(\vect{s}, \vect{s}+\vect{\tau})` as this quantity does not
depend on :math:`\vect{s}`.
In the continuous case, :math:`\cD` must be equal to
:math:`\Rset^n`\ as it is invariant by any translation. In the
discrete case, :math:`\cD` is a lattice
:math:`\mathcal{L}=(\delta_1 \Zset \times \dots \times \delta_n \Zset)`
where :math:`\forall i, \delta_i >0`.

Stationarity
~~~~~~~~~~~~

A process :math:`X` is *stationary* if its
distribution is invariant by translation: :math:`\forall k \in \Nset`,
:math:`\forall (\vect{t}_1, \dots, \vect{t}_k) \in \cD`,
:math:`\forall \vect{h}\in \Rset^n`, we have:

.. math::
  :label: statGen

    \forall k \in \Nset, \, \forall (\vect{t}_1, \dots, \vect{t}_k) \in \cD, \, \forall \vect{h}\in \Rset^n, \, (X_{\vect{t}_1}, \dots, X_{\vect{t}_k}) \stackrel{\mathcal{D}}{=} (X_{\vect{t}_1+\vect{h}}, \dots, X_{\vect{t}_k+\vect{h}})

Spectral density function
~~~~~~~~~~~~~~~~~~~~~~~~~

If :math:`X` is a zero-mean weakly
stationary continuous process and if for all :math:`(i,j)`,
:math:`C^{stat}_{i,j} : \Rset^n \rightarrow \Rset^n` is
:math:`\cL^1(\Rset^n)` (ie
:math:`\int_{\Rset^n} |C^{stat}_{i,j}(\vect{\tau})|\, d\vect{\tau}\, < +\infty`),
we define the *bilateral spectral density function*
:math:`S : \Rset^n \rightarrow \cH^+(\inputDim)` where
:math:`\mathcal{H}^+(\inputDim) \in \mathcal{M}_d(\Cset)` is the set of
:math:`\inputDim`-dimensional positive definite hermitian matrices, as the
Fourier transform of the covariance function :math:`C^{stat}`:

.. math::
  :label: specdensFunc

    \forall \vect{f} \in \Rset^n, \,S(\vect{f}) = \int_{\Rset^n}\exp\left\{  -2i\pi <\vect{f},\vect{\tau}> \right\} C^{stat}(\vect{\tau})\, d\vect{\tau}

Furthermore, if for all :math:`(i,j)`,
:math:`S_{i,j}: \Rset^n \rightarrow \Cset` is :math:`\cL^1(\Cset)` (ie
:math:`\int_{\Rset^n} |S_{i,j}(\vect{f})|\, d\vect{f}\, < +\infty`),
:math:`C^{stat}` may be evaluated from :math:`S` as follows:

.. math::
  :label: cspectransform

    C^{stat}(\vect{\tau})  = \int_{\Rset^n}\exp\left\{  2i\pi <\vect{f}, \vect{\tau}> \right\}S(\vect{f})\, d\vect{f}

In the discrete case, the spectral density is defined for a zero-mean
weakly stationary process, where
:math:`\cD=(\delta_1 \Zset \times \dots \times \delta_n \Zset)` with
:math:`\forall i, \delta_i >0` and where the previous integrals are
replaced by sums.