1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
.. _random_mixture:
Affine combination of independent univariate random variables
-------------------------------------------------------------
Introduction
~~~~~~~~~~~~
Let :math:`\vect{Y}` be the random vector defined as the
affine transform of :math:`n` independent univariate random variables.
More precisely, consider:
.. math::
:label: LinearCombinationFormula
\vect{Y}=\vect{y}_0+\mat{M}\,\vect{X}
where :math:`\vect{y}_0 \in \Rset^{\inputDim}` is a deterministic vector with
:math:`\inputDim \in \{1,2,3\}`, :math:`\mat{M} \in \mathcal{M}_{\inputDim,n}(\Rset)` is a
deterministic matrix and :math:`\left(X_k\right)_{ 1 \leq k \leq n}` are
independent random variables.
In this case, it is possible to directly evaluate the distribution of
:math:`\vect{Y}` and then to ask :math:`\vect{Y}` any request compatible
with a distribution: moments, probability and cumulative density
functions, quantiles (in dimension 1 only)...
In this document, we present a method using the Poisson summation
formula to evaluate the distribution of :math:`\vect{Y}`.
Evaluation of the probability density function
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Since, by hypothesis, the univariate random variables :math:`X_i` are independent, the
characteristic function of :math:`\vect{Y}`, denoted :math:`\phi_{\vect{Y}}`, is
easily defined from the characteristic function of :math:`X_k` denoted
:math:`\phi_{X_k}` as follows:
.. math::
:label: CharactFuncY
\phi_{\vect{Y}}(u_1,\hdots,u_{\inputDim})
= \prod_{j=1}^{\inputDim} e^{iu_j{y_0}_j} \prod_{k=1}^n\phi_{X_k}\left(\left(M^t u\right)_k\right),
for any :math:`\vect{u} \in \Rset^{\inputDim}`.
Once :math:`\phi_{\vect{Y}}` is evaluated, it is possible to evaluate the
probability density function of :math:`\vect{Y}`, denoted :math:`p_{\vect{Y}}` :
several techniques are possible, as the inversion of the Fourier
transformation, but this method is not easy to implement.
We can alternatively use the Poisson summation formula:
.. math::
:label: PoissonSum
& \sum_{j_1 \in \Zset}\hdots\sum_{j_{\inputDim} \in \Zset} p_{\vect{Y}}\left(y_1+\frac{2\pi j_1}{h_1},\hdots,y_{\inputDim}+\frac{2\pi j_{\inputDim}}{h_{\inputDim}}\right) \\
& = \left(\prod_{j=1}^{\inputDim} \frac{h_j}{2 \pi} \right) \sum_{k_1 \in \Zset}\hdots\sum_{k_{\inputDim} \in \Zset}\phi\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right)e^{-\imath \left(\sum_{m=1}^{\inputDim}k_m h_m y_m\right)}
where :math:`h_1, \hdots, h_{\inputDim} \in \Rset` and
:math:`\imath` is the complex imaginary number, i.e. :math:`\imath^2 = -1`.
If :math:`h_1,\hdots,h_{\inputDim}` are close to zero, then:
.. math:: \frac{2k\pi}{h_j} \approx + \in fty
and:
.. math:: p_{\vect{Y}}\left(\hdots,\frac{2k\pi}{h_j},\hdots\right) \approx 0
because of the decreasing properties of :math:`p_{\vect{Y}}`. Thus the nested sums of the left
term of :eq:`PoissonSum` are reduced to the central term
:math:`j_1=\hdots=j_{\inputDim} = 0`: the left term is approximately equal to
:math:`p_{\vect{Y}}(y)`.
Furthermore, the right term of :eq:`PoissonSum` is a series which
converges very fast: few terms of the series are enough to get
machine-precision accuracy. Let us note that the factors
:math:`\phi_{\vect{Y}}(k_1 h_1,\hdots,k_{\inputDim},h_{\inputDim})`, which are expensive to
evaluate, do not depend on :math:`y` and are evaluated once only.
It is also possible to greatly improve the performance of the
algorithm by noticing that the equation is linear between :math:`p_{\vect{Y}}` and
:math:`\phi_{\vect{Y}}`. We denote by :math:`q_Y` and :math:`\psi_Y` respectively
the density and the characteristic function of the multivariate normal
distribution with the same mean :math:`\vect{\mu}` and same covariance
matrix :math:`\vect{C}` as the affine combination. By applying this
multivariate normal distribution to the equation, we obtain by
subtraction:
.. math::
:label: algoPoisson
p_{\vect{Y}}\left(y\right)
& = \sum_{j \in \Zset^{\inputDim}} q_Y\left(y_1+\frac{2\pi j_1}{h_1},\cdots,y_{\inputDim}+\frac{2\pi j_{\inputDim}}{h_{\inputDim}}\right) \\
& \quad + \frac{H}{2^{\inputDim}\pi^{\inputDim}}\sum_{|k_1|\leq N}\cdots\sum_{|k_{\inputDim}|\leq N} \delta_Y\left(k_1h_1,\cdots,k_{\inputDim}h_{\inputDim}\right)e^{-\imath \left(\sum_{m=1}^{d}k_m h_m y_m\right)}
where :math:`H = h_1\times\cdots\times h_{\inputDim}`,
:math:`j=(j_1,\cdots,j_{\inputDim})` and :math:`\delta_Y:=\phi_{\vect{Y}} - \psi_Y`.
In the case where :math:`n \gg 1`, using the limit central theorem,
the law of :math:`\vect{Y}` tends to the normal distribution density
:math:`q`, which will drastically reduce :math:`N`. The sum on
:math:`q` will become the most CPU-intensive part, because in the
general case we will have to keep more terms than the central one in
this sum, since the parameters :math:`h_1, \dots h_{\inputDim}` were
calibrated with respect to :math:`p` and not :math:`q`.
The parameters :math:`h_1, \dots h_{\inputDim}` are calibrated using the
following formula:
.. math:: h_\ell = \frac{2\pi}{(\beta+4\alpha)\sigma_\ell}
where :math:`\sigma_\ell=\sqrt{\Cov{\vect{Y}}_{\ell,\ell}}` and
:math:`\alpha`, :math:`\beta` are respectively the number of standard
deviations covered by the marginal distribution (:math:`\alpha=5` by
default) and :math:`\beta` the number of marginal deviations beyond
which the density is negligible (:math:`\beta=8.5` by default).
The parameter :math:`N` is dynamically calibrated: we start with
:math:`N=8` then we double :math:`N` value until the total contribution
of the additional terms is negligible.
Evaluation of the moments
~~~~~~~~~~~~~~~~~~~~~~~~~
The relation :eq:`LinearCombinationFormula` enables to evaluate all the
moments of the affine combination, if mathematically defined. For example,
we have:
.. math::
\Expect{\vect{Y}} & = \vect{y_0} + \mat{M}\Expect{\vect{X}} \\
\Cov{\vect{Y}} & = \mat{M}\,\Cov{\vect{X}}\mat{M}^t
Computation on a regular grid
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We want to compute the density function on a regular grid and
to get an approximation quickly.
The regular grid is:
.. math::
\:y_{r,m}=\mu_r+b\left(\frac{2m+1}{M} - 1\right)\sigma_r
for all :math:`r \in \{1,\hdots,\inputDim\}` and :math:`m \in \{0,\hdots,M-1\}`.
Denoting :math:`p_{m_1,\hdots,m_{\inputDim}}=p_{\vect{Y}}(y_{1,m_1},\hdots,y_{d,m_{\inputDim}})`:
.. math::
p_{m_1,\hdots,m_{\inputDim}}= Q_{m_1,\hdots,m_{\inputDim}}+S_{m_1,\hdots,m_{\inputDim}}
for which the term :math:`S_{m_1,\hdots,m_{\inputDim}}` is the most CPU
consuming. This term rewrites:
.. math::
S_{m_1,\hdots,m_{\inputDim}}=&\frac{H}{2^{\inputDim}\pi^{\inputDim}}\sum_{k_1=-N}^{N}\hdots\sum_{k_{\inputDim}=-N}^{N}\delta\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right)
E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_{\inputDim})
with:
.. math::
\delta\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right) & = (\phi-\psi)\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right)\\
E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_{\inputDim}) & = e^{-i\sum_{j=1}^{\inputDim} k_jh_j\left(\mu_j+b\left(\frac{2m_j+1}{M}-1\right)\sigma_j\right)}
The aim is to rewrite the previous expression as a :math:`d`- discrete
Fourier transform, in order to apply Fast Fourier Transform (*FFT*) for
its evaluation.
We set :math:`M=N` and
:math:`\forall j \in \{1,\hdots,d\},\: h_j=\frac{\pi}{b\sigma_j}` and
:math:`\tau_j=\frac{\mu_j}{b\sigma_j}`. For convenience, we introduce
the functions:
.. math::
f_j(k) = e^{-i\pi (k+1)\left(\tau_j-1+\frac{1}{N}\right)}
We use :math:`k+1` instead of :math:`k` in this function to simplify
expressions below.
We obtain:
.. math::
& E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_{\inputDim}) \\
& = e^{-i\sum_{j=1}^{d} k_jh_jb\sigma_j\left(\frac{\mu_j}{b\sigma_j}+\frac{2m_j}{N}+\frac{1}{N}-1\right)}\\
& = e^{-2i\pi\left(\frac{\sum_{j=1}^{d}k_j m_j}{N}\right)}e^{-i\pi\sum_{j=1}^{d} k_j\left(\tau_j-1+\frac{1}{N}\right)} \\
& = e^{-2i\pi\left(\frac{\sum_{j=1}^{d}k_j m_j}{N}\right)} f_1(k_1-1) \times \hdots \times f_{\inputDim}(k_{\inputDim}-1)
For performance reasons, we want to use the discrete Fourier transform
with the following convention in dimension 1:
.. math:: A_m = \sum_{k=0}^{N-1} a_k e^{-2i\pi\frac{km}{N}}
which extension to dimensions 2 and 3 are respectively:
.. math::
A_{m,n} & = \sum_{k=0}^{N-1}\sum_{l=0}^{N-1} a_{k,l} e^{-2i\pi\frac{km}{N}} e^{-2i\pi\frac{ln}{N}}\\
A_{m,n,p} & = \sum_{k=0}^{N-1}\sum_{l=0}^{N-1}\sum_{s=0}^{N-1} a_{k,l,s} e^{-2i\pi\frac{km}{N}} e^{-2i\pi\frac{ln}{N}} e^{-2i\pi\frac{sp}{N}}
We decompose sums of on the interval :math:`[-N,N]` into three parts:
.. math::
:label: decomposition-sum
& \sum_{k_j=-N}^{N}\delta\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right) E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_{\inputDim}) \\
& = \sum_{k_j=-N}^{-1} \delta\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right) E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_{\inputDim}) \\
& \quad + \delta\left(k_1h_1,\hdots,0,\hdots,k_{\inputDim}h_{\inputDim}\right) E_{m_1,\hdots,0,\hdots,m_{\inputDim}}(k_1,\hdots,0,\hdots,k_{\inputDim}) \\
& \quad+ \sum_{k_j=1}^{N}\delta\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right) E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_{\inputDim})
If we compute :math:`E` for dimension :math:`d-1`, then the
middle term in this sum is trivial.
To compute the last sum, we apply a change of variable :math:`k_j' = k_j-1`:
.. math::
& \sum_{k_j=1}^{N}\delta\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right) E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_{\inputDim}) \\
& = \sum_{k_j=0}^{N-1}\delta\left(k_1h_1,\hdots,(k_j+1)h_j,\hdots,k_{\inputDim}h_{\inputDim}\right) \times\\
& \quad E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_j+1,\hdots,k_{\inputDim})
This implies:
.. math::
& E_{m_1,\hdots,m_{\inputDim}}(k_1, \hdots, k_j+1, \hdots, k_{\inputDim}) \\
&= e^{-2i\pi\left(\frac{\sum_{l = 1}^{d}k_l m_l}{N} +\frac{m_j}{N}\right)}
f_1(k_1 - 1)\times \hdots \times f_j(k_j) \times \hdots \times f_{\inputDim}(k_{\inputDim} - 1) \\
&= e^{-2i\pi\left(\frac{m_j}{N}\right)}
e^{-2i\pi\left(\frac{\sum_{l = 1}^{d}k_l m_l}{N}\right)}
f_1(k_1 - 1)\times \hdots \times f_j(k_j) \times \hdots \times f_{\inputDim}(k_{\inputDim} - 1)
Thus:
.. math::
& \sum_{k_j=1}^{N}\delta\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right) E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_{\inputDim}) \\
& = e^{-2i\pi\left(\frac{m_j}{N}\right)} \sum_{k_j=0}^{N-1}\delta\left(k_1h_1,\hdots,(k_j+1)h_j,\hdots,k_{\inputDim}h_{\inputDim}\right) \times \\
& \quad e^{-2i\pi\left(\frac{\sum_{l=1}^{d}k_l m_l}{N}\right)}
f_1(k_1-1)\times \hdots \times f_j(k_j)\times \hdots \times f_{\inputDim}(k_{\inputDim}-1)
To compute the first sum of equation, we apply a change of variable
:math:`k_j'=N+k_j`:
.. math::
& \sum_{k_j=-N}^{-1}\delta\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right) E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_{\inputDim}) \\
&= \sum_{k_j=0}^{N-1}\delta\left(k_1h_1,\hdots,(k_j-N)h_j,\hdots,k_{\inputDim}h_{\inputDim}\right) \times \\
& \quad E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_j-N,\hdots,k_{\inputDim})
This implies:
.. math::
& E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_j-N,\hdots,k_{\inputDim}) \\
&= e^{-2i\pi\left(\frac{\sum_{l=1}^{d}k_l m_l}{N} -m_j\right)}
f_1(k_1-1)\times \hdots \times f_j(k_j-1-N)\times \hdots \times f_{\inputDim}(k_{\inputDim}-1) \\
& = e^{-2i\pi\left(\frac{\sum_{l=1}^{d}k_l m_l}{N}\right)}
f_1(k_1-1)\times \hdots \times \overline{f}_j(N-1-k_j)\times \hdots \times f_{\inputDim}(k_{\inputDim}-1)
Thus:
.. math::
& \sum_{k_j=-N}^{-1}\delta\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right) E_{m_1,\hdots,m_{\inputDim}} (k_1,\hdots,k_{\inputDim}) \\
& = \sum_{k_j=0}^{N-1}\delta\left(k_1h_1,\hdots,(k_j-N)h_j,\hdots,k_{\inputDim}h_{\inputDim}\right) \times \\
& \quad e^{-2i\pi\left(\frac{\sum_{l=1}^{d}k_l m_l}{N}\right)}
f_1(k_1-1)\times \hdots \times \overline{f}_j(N-1-k_j)\times \hdots \times f_{\inputDim}(k_{\inputDim}-1)
To summarize:
#. In order to compute sum from :math:`k_1=1` to :math:`N`, we multiply
by :math:`e^{-2i\pi\left(\frac{m_1}{N}\right)}` and consider
:math:`\delta((k_1+1)h,\hdots)f_1(k_1)`
#. In order to compute sum from :math:`k_1=-N` to :math:`-1`, we
consider :math:`\delta((k_1-N)h,\hdots)\overline{f}_1(N-1-k_1)`
.. topic:: API:
- See :class:`~openturns.RandomMixture`
.. topic:: Examples:
- See :doc:`/auto_probabilistic_modeling/distributions/plot_create_random_mixture`
.. topic:: References:
- [abate1992]_
|