File: random_mixture.rst

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (286 lines) | stat: -rw-r--r-- 12,706 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
.. _random_mixture:

Affine combination of independent univariate random variables
-------------------------------------------------------------

Introduction
~~~~~~~~~~~~

Let :math:`\vect{Y}` be the random vector defined as the
affine transform of :math:`n` independent univariate random variables.
More precisely, consider:

.. math::
  :label: LinearCombinationFormula

   \vect{Y}=\vect{y}_0+\mat{M}\,\vect{X}

where :math:`\vect{y}_0 \in \Rset^{\inputDim}` is a deterministic vector with
:math:`\inputDim \in \{1,2,3\}`, :math:`\mat{M} \in \mathcal{M}_{\inputDim,n}(\Rset)` is a
deterministic matrix and :math:`\left(X_k\right)_{ 1 \leq k \leq n}` are
independent random variables.
In this case, it is possible to directly evaluate the distribution of
:math:`\vect{Y}` and then to ask :math:`\vect{Y}` any request compatible
with a distribution: moments, probability and cumulative density
functions, quantiles (in dimension 1 only)...
In this document, we present a method using the Poisson summation
formula to evaluate the distribution of :math:`\vect{Y}`.

Evaluation of the probability density function
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Since, by hypothesis, the univariate random variables :math:`X_i` are independent, the
characteristic function of :math:`\vect{Y}`, denoted :math:`\phi_{\vect{Y}}`, is
easily defined from the characteristic function of :math:`X_k` denoted
:math:`\phi_{X_k}` as follows:

.. math::
  :label: CharactFuncY

   \phi_{\vect{Y}}(u_1,\hdots,u_{\inputDim})
   = \prod_{j=1}^{\inputDim} e^{iu_j{y_0}_j} \prod_{k=1}^n\phi_{X_k}\left(\left(M^t u\right)_k\right),

for any :math:`\vect{u} \in \Rset^{\inputDim}`.
Once :math:`\phi_{\vect{Y}}` is evaluated, it is possible to evaluate the
probability density function of :math:`\vect{Y}`, denoted :math:`p_{\vect{Y}}` :
several techniques are possible, as the inversion of the Fourier
transformation, but this method is not easy to implement.
We can alternatively use the Poisson summation formula:

.. math::
  :label: PoissonSum

   & \sum_{j_1 \in \Zset}\hdots\sum_{j_{\inputDim} \in \Zset} p_{\vect{Y}}\left(y_1+\frac{2\pi j_1}{h_1},\hdots,y_{\inputDim}+\frac{2\pi j_{\inputDim}}{h_{\inputDim}}\right) \\
   & = \left(\prod_{j=1}^{\inputDim} \frac{h_j}{2 \pi} \right) \sum_{k_1 \in \Zset}\hdots\sum_{k_{\inputDim} \in \Zset}\phi\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right)e^{-\imath \left(\sum_{m=1}^{\inputDim}k_m h_m y_m\right)}

where :math:`h_1, \hdots, h_{\inputDim} \in \Rset` and
:math:`\imath` is the complex imaginary number, i.e. :math:`\imath^2 = -1`.
If :math:`h_1,\hdots,h_{\inputDim}` are close to zero, then:

.. math:: \frac{2k\pi}{h_j} \approx + \in fty

and:

.. math:: p_{\vect{Y}}\left(\hdots,\frac{2k\pi}{h_j},\hdots\right) \approx 0

because of the decreasing properties of :math:`p_{\vect{Y}}`. Thus the nested sums of the left
term of :eq:`PoissonSum` are reduced to the central term
:math:`j_1=\hdots=j_{\inputDim} = 0`: the left term is approximately equal to
:math:`p_{\vect{Y}}(y)`.
Furthermore, the right term of :eq:`PoissonSum` is a series which
converges very fast: few terms of the series are enough to get
machine-precision accuracy. Let us note that the factors
:math:`\phi_{\vect{Y}}(k_1 h_1,\hdots,k_{\inputDim},h_{\inputDim})`, which are expensive to
evaluate, do not depend on :math:`y` and are evaluated once only.

It is also possible to greatly improve the performance of the
algorithm by noticing that the equation is linear between :math:`p_{\vect{Y}}` and
:math:`\phi_{\vect{Y}}`. We denote by :math:`q_Y` and :math:`\psi_Y` respectively
the density and the characteristic function of the multivariate normal
distribution with the same mean :math:`\vect{\mu}` and same covariance
matrix :math:`\vect{C}` as the affine combination. By applying this
multivariate normal distribution to the equation, we obtain by
subtraction:

.. math::
    :label: algoPoisson

     p_{\vect{Y}}\left(y\right)
     & = \sum_{j \in \Zset^{\inputDim}} q_Y\left(y_1+\frac{2\pi j_1}{h_1},\cdots,y_{\inputDim}+\frac{2\pi j_{\inputDim}}{h_{\inputDim}}\right) \\
     & \quad + \frac{H}{2^{\inputDim}\pi^{\inputDim}}\sum_{|k_1|\leq N}\cdots\sum_{|k_{\inputDim}|\leq N} \delta_Y\left(k_1h_1,\cdots,k_{\inputDim}h_{\inputDim}\right)e^{-\imath \left(\sum_{m=1}^{d}k_m h_m y_m\right)}

where :math:`H = h_1\times\cdots\times h_{\inputDim}`,
:math:`j=(j_1,\cdots,j_{\inputDim})` and :math:`\delta_Y:=\phi_{\vect{Y}} - \psi_Y`.
In the case where :math:`n \gg 1`, using the limit central theorem,
the law of :math:`\vect{Y}` tends to the normal distribution density
:math:`q`, which will drastically reduce :math:`N`. The sum on
:math:`q` will become the most CPU-intensive part, because in the
general case we will have to keep more terms than the central one in
this sum, since the parameters :math:`h_1, \dots  h_{\inputDim}` were
calibrated with respect to :math:`p` and not :math:`q`.

The parameters :math:`h_1, \dots  h_{\inputDim}` are calibrated using the
following formula:

.. math::  h_\ell = \frac{2\pi}{(\beta+4\alpha)\sigma_\ell}

where :math:`\sigma_\ell=\sqrt{\Cov{\vect{Y}}_{\ell,\ell}}` and
:math:`\alpha`, :math:`\beta` are respectively the number of standard
deviations covered by the marginal distribution (:math:`\alpha=5` by
default) and :math:`\beta` the number of marginal deviations beyond
which the density is negligible (:math:`\beta=8.5` by default).
The parameter :math:`N` is dynamically calibrated: we start with
:math:`N=8` then we double :math:`N` value until the total contribution
of the additional terms is negligible.

Evaluation of the moments
~~~~~~~~~~~~~~~~~~~~~~~~~

The relation :eq:`LinearCombinationFormula` enables to evaluate all the
moments of the affine combination, if mathematically defined. For example,
we have:

.. math::

      \Expect{\vect{Y}} & = \vect{y_0} + \mat{M}\Expect{\vect{X}} \\
      \Cov{\vect{Y}} & = \mat{M}\,\Cov{\vect{X}}\mat{M}^t

Computation on a regular grid
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We want to compute the density function on a regular grid and
to get an approximation quickly.
The regular grid is:

.. math::


   \:y_{r,m}=\mu_r+b\left(\frac{2m+1}{M} - 1\right)\sigma_r

for all :math:`r \in \{1,\hdots,\inputDim\}` and :math:`m \in \{0,\hdots,M-1\}`.
Denoting :math:`p_{m_1,\hdots,m_{\inputDim}}=p_{\vect{Y}}(y_{1,m_1},\hdots,y_{d,m_{\inputDim}})`:

.. math::

   p_{m_1,\hdots,m_{\inputDim}}= Q_{m_1,\hdots,m_{\inputDim}}+S_{m_1,\hdots,m_{\inputDim}}

for which the term :math:`S_{m_1,\hdots,m_{\inputDim}}` is the most CPU
consuming. This term rewrites:

.. math::

   S_{m_1,\hdots,m_{\inputDim}}=&\frac{H}{2^{\inputDim}\pi^{\inputDim}}\sum_{k_1=-N}^{N}\hdots\sum_{k_{\inputDim}=-N}^{N}\delta\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right)
   E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_{\inputDim})

with:

.. math::

   \delta\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right) & = (\phi-\psi)\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right)\\
   E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_{\inputDim}) & = e^{-i\sum_{j=1}^{\inputDim} k_jh_j\left(\mu_j+b\left(\frac{2m_j+1}{M}-1\right)\sigma_j\right)}

The aim is to rewrite the previous expression as a :math:`d`- discrete
Fourier transform, in order to apply Fast Fourier Transform (*FFT*) for
its evaluation.
We set :math:`M=N` and
:math:`\forall j  \in \{1,\hdots,d\},\: h_j=\frac{\pi}{b\sigma_j}` and
:math:`\tau_j=\frac{\mu_j}{b\sigma_j}`. For convenience, we introduce
the functions:

.. math::

    f_j(k) = e^{-i\pi (k+1)\left(\tau_j-1+\frac{1}{N}\right)}

We use :math:`k+1` instead of :math:`k` in this function to simplify
expressions below.
We obtain:

.. math::

   & E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_{\inputDim}) \\
   & = e^{-i\sum_{j=1}^{d} k_jh_jb\sigma_j\left(\frac{\mu_j}{b\sigma_j}+\frac{2m_j}{N}+\frac{1}{N}-1\right)}\\
   & = e^{-2i\pi\left(\frac{\sum_{j=1}^{d}k_j m_j}{N}\right)}e^{-i\pi\sum_{j=1}^{d} k_j\left(\tau_j-1+\frac{1}{N}\right)} \\
   & = e^{-2i\pi\left(\frac{\sum_{j=1}^{d}k_j m_j}{N}\right)} f_1(k_1-1) \times \hdots \times f_{\inputDim}(k_{\inputDim}-1)

For performance reasons, we want to use the discrete Fourier transform
with the following convention in dimension 1:

.. math:: A_m = \sum_{k=0}^{N-1} a_k e^{-2i\pi\frac{km}{N}}

which extension to dimensions 2 and 3 are respectively:

.. math::

    A_{m,n} & = \sum_{k=0}^{N-1}\sum_{l=0}^{N-1} a_{k,l} e^{-2i\pi\frac{km}{N}} e^{-2i\pi\frac{ln}{N}}\\
    A_{m,n,p} & = \sum_{k=0}^{N-1}\sum_{l=0}^{N-1}\sum_{s=0}^{N-1} a_{k,l,s} e^{-2i\pi\frac{km}{N}} e^{-2i\pi\frac{ln}{N}} e^{-2i\pi\frac{sp}{N}}

We decompose sums of on the interval :math:`[-N,N]` into three parts:

.. math::
 :label: decomposition-sum

     & \sum_{k_j=-N}^{N}\delta\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right) E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_{\inputDim}) \\
     & = \sum_{k_j=-N}^{-1} \delta\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right) E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_{\inputDim}) \\
     & \quad + \delta\left(k_1h_1,\hdots,0,\hdots,k_{\inputDim}h_{\inputDim}\right) E_{m_1,\hdots,0,\hdots,m_{\inputDim}}(k_1,\hdots,0,\hdots,k_{\inputDim}) \\
     & \quad+ \sum_{k_j=1}^{N}\delta\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right) E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_{\inputDim})

If we compute :math:`E` for dimension :math:`d-1`, then the
middle term in this sum is trivial.

To compute the last sum, we apply a change of variable :math:`k_j' = k_j-1`:

.. math::

     & \sum_{k_j=1}^{N}\delta\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right) E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_{\inputDim}) \\
     & = \sum_{k_j=0}^{N-1}\delta\left(k_1h_1,\hdots,(k_j+1)h_j,\hdots,k_{\inputDim}h_{\inputDim}\right) \times\\
     & \quad E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_j+1,\hdots,k_{\inputDim})

This implies:

.. math::

     & E_{m_1,\hdots,m_{\inputDim}}(k_1, \hdots, k_j+1, \hdots, k_{\inputDim}) \\
     &= e^{-2i\pi\left(\frac{\sum_{l = 1}^{d}k_l m_l}{N} +\frac{m_j}{N}\right)}
         f_1(k_1 - 1)\times \hdots \times f_j(k_j) \times \hdots \times f_{\inputDim}(k_{\inputDim} - 1) \\
     &= e^{-2i\pi\left(\frac{m_j}{N}\right)}
         e^{-2i\pi\left(\frac{\sum_{l = 1}^{d}k_l m_l}{N}\right)}
         f_1(k_1 - 1)\times \hdots \times f_j(k_j) \times \hdots \times f_{\inputDim}(k_{\inputDim} - 1)

Thus:

.. math::

     & \sum_{k_j=1}^{N}\delta\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right) E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_{\inputDim}) \\
     & = e^{-2i\pi\left(\frac{m_j}{N}\right)} \sum_{k_j=0}^{N-1}\delta\left(k_1h_1,\hdots,(k_j+1)h_j,\hdots,k_{\inputDim}h_{\inputDim}\right) \times \\
     & \quad e^{-2i\pi\left(\frac{\sum_{l=1}^{d}k_l m_l}{N}\right)}
         f_1(k_1-1)\times \hdots \times f_j(k_j)\times \hdots \times f_{\inputDim}(k_{\inputDim}-1)

To compute the first sum of equation, we apply a change of variable
:math:`k_j'=N+k_j`:

.. math::

     & \sum_{k_j=-N}^{-1}\delta\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right) E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_{\inputDim}) \\
     &=  \sum_{k_j=0}^{N-1}\delta\left(k_1h_1,\hdots,(k_j-N)h_j,\hdots,k_{\inputDim}h_{\inputDim}\right) \times \\
       & \quad  E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_j-N,\hdots,k_{\inputDim})

This implies:

.. math::

     & E_{m_1,\hdots,m_{\inputDim}}(k_1,\hdots,k_j-N,\hdots,k_{\inputDim}) \\
     &= e^{-2i\pi\left(\frac{\sum_{l=1}^{d}k_l m_l}{N} -m_j\right)}
         f_1(k_1-1)\times \hdots \times f_j(k_j-1-N)\times \hdots \times f_{\inputDim}(k_{\inputDim}-1) \\
     & = e^{-2i\pi\left(\frac{\sum_{l=1}^{d}k_l m_l}{N}\right)}
         f_1(k_1-1)\times \hdots \times \overline{f}_j(N-1-k_j)\times \hdots \times f_{\inputDim}(k_{\inputDim}-1)

Thus:

.. math::

     & \sum_{k_j=-N}^{-1}\delta\left(k_1h_1,\hdots,k_{\inputDim}h_{\inputDim}\right) E_{m_1,\hdots,m_{\inputDim}} (k_1,\hdots,k_{\inputDim}) \\
     & = \sum_{k_j=0}^{N-1}\delta\left(k_1h_1,\hdots,(k_j-N)h_j,\hdots,k_{\inputDim}h_{\inputDim}\right) \times \\
     & \quad e^{-2i\pi\left(\frac{\sum_{l=1}^{d}k_l m_l}{N}\right)}
         f_1(k_1-1)\times \hdots \times \overline{f}_j(N-1-k_j)\times \hdots \times f_{\inputDim}(k_{\inputDim}-1)

To summarize:

#. In order to compute sum from :math:`k_1=1` to :math:`N`, we multiply
   by :math:`e^{-2i\pi\left(\frac{m_1}{N}\right)}` and consider
   :math:`\delta((k_1+1)h,\hdots)f_1(k_1)`

#. In order to compute sum from :math:`k_1=-N` to :math:`-1`, we
   consider :math:`\delta((k_1-N)h,\hdots)\overline{f}_1(N-1-k_1)`


.. topic:: API:

    - See :class:`~openturns.RandomMixture`

.. topic:: Examples:

    - See :doc:`/auto_probabilistic_modeling/distributions/plot_create_random_mixture`

.. topic:: References:

    -  [abate1992]_