1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
.. _sorm_approximation:
SORM
----
The Second Order Reliability Method is used under the following context: let :math:`\inputRV` be a probabilistic
input vector with joint density probability :math:`\pdf`, let :math:`\model` be the limit state function of
the model and let :math:`\cD_f = \{\vect{x} \in \Rset^\inputDim \,
/ \, \model(\vect{x}) \le 0\}` be an event whose probability
:math:`P_f` is defined as:
.. math::
:label: PfX4
P_f = \Prob{\model(\inputRV)\leq 0} = \int_{\cD_f} \pdf\, d\vect{x}
The principle is the same as for :ref:`form_approximation`: we map the physical space into the standard space
through an :ref:`isoprobabilistic transformation <isoprobabilistic_transformation>`).
The integral :eq:`PfX4` can be written as:
.. math::
:label: PfU2
P_f = \Prob{h(\RVU)\leq 0} = \int_{\Rset^d} \boldsymbol{1}_{h(\vect{u}) \leq 0}
\,f_{\RVU}(\vect{u})\,d\vect{u}
where :math:`f_{\RVU}` is the density function of the distribution in the standard space: that distribution is
spherical (invariant by rotation by definition). That property implies that :math:`f_{\RVU}` is a function of
:math:`||\RVU||^2` only.
Furthermore, we suppose that outside the sphere which tangents the limit state surface in the standard
space, :math:`f_{\RVU}` is decreasing.
The difference with FORM comes from the approximation of the limit state surface at the design point :math:`P^*` in
the standard space: SORM approximates it by a quadratic surface that has the same main curvatures at the design point.
Let :math:`(\kappa_i)_{1 \leq i \leq \inputDim-1}` the :math:`(n-1)` main curvatures of the limit state function at the design
point in the standard space.
Several approximations are available,
detailed here in the case where the origin of the standard
space does not belong to the failure domain.
**Breitung’s formula** is an asymptotic result. The
usual formula used in the normal standard space has been generalized
in [lebrun2009b]_ to standard spaces where the
distribution is spherical, with :math:`E` the marginal cumulative
density function of the spherical distributions in the standard space:
.. math::
:label: PfSORM_B
P_{Breitung}^{generalized} \stackrel{\beta\rightarrow\infty}{=} \Phi(-\beta)\prod_{i=1}^{d-1}\frac{1}
{\sqrt{1+\kappa_i^0}}
where :math:`\Phi` is the cumulative distribution function of the standard 1D normal
distribution and :math:`(\kappa_1^0, \dots, \kappa_{\inputDim-1}^0)` the main curvatures of the
homothetic of the failure domain at distance 1 from the origin.
**Hohenbichler’s formula** is an approximation of :eq:`PfSORM_B`:
.. math::
:label: PfSORM_HB
P_{Hohenbichler} = \Phi(-\beta) \prod_{i=1}^{\inputDim-1} \left( 1+\frac{\phi(-\beta)}{\beta \Phi(-\beta)}\kappa_i^0
\right) ^{-1/2}
Recording to the Mill's ratio, :math:`\frac{\phi(-\beta)}{\beta \Phi(-\beta)}` tends to 1 when :math:`\beta` tends
to :math:`+\infty`.
This formula is valid **only** in the normal standard space and if:
.. math::
1+\frac{\phi(-\beta)}{\beta\Phi(-\beta)}\kappa_i^0 > 0
for any :math:`i`.
**Tvedt’s formula** (Tvedt, 1988):
.. math::
:label: PfSORM_T
P_{Tvedt} = A_1 + A_2 + A_3
where :math:`A_1`, :math:`A_2` and :math:`A_3` are defined by:
.. math::
A_1 & = \Phi(-\beta) \prod_{j=1}^{d-1} \left( 1+ \kappa_j^0 \right) ^{-1/2}\\
A_2 & = \left[ \beta \Phi(-\beta) - \phi(\beta)\right ] \left[ \prod_{j=1}^{d-1} \left( 1+\kappa_j^0
\right) ^{-1/2} - \prod_{j=1}^{d-1} \left( 1+(1 / \beta + 1) \kappa_j^0 \right) ^{-1/2} \right] \\
A_3 & = (1 + \beta) \left[ \beta \Phi(-\beta) - \phi(\beta)\right ] \\
& \quad \times \left[ \prod_{j=1}^{d-1} \left( 1+\kappa_j^0 \right)^{-1/2} - \operatorname{Re}
\left(\prod_{j=1}^{d-1}\left( 1+(\imath / \beta + 1) \kappa_j^0 \right) ^{-1/2} \right) \right]
where :math:`{\cR}e(z)` is the real part of the complex number
:math:`z` and :math:`\imath` the complex number such that
:math:`\imath^2 = -1` and :math:`\Phi` the cumulative distribution
function of the standard 1D normal distribution.
This formula is valid **only** in the normal standard space and if
:math:`1+\kappa_j^0 > 0` and
:math:`1+(1/\beta + 1) \kappa_j^0> 0` for any :math:`j`.
.. topic:: API:
- See :class:`~openturns.SORM`
.. topic:: Examples:
- See :doc:`/auto_reliability_sensitivity/reliability/plot_estimate_probability_form`
.. topic:: References:
- Breitung K. a, "Asymptotic approximation for probability integral,"
Probability Engineering Mechanics, 1989, Vol 4, No. 4.
- Breitung K. b, 1984, "Asymptotic Approximation for multinormal Integrals,"
Journal of Engineering Mechanics, ASCE, 110(3), 357-366.
- Hohenbichler M., Rackwitz R., 1988, "Improvement of second order reliability
estimates by importance sampling," Journal of Engineering Mechanics, ASCE,114(12), pp 2195-2199.
- [lebrun2009b]_
- [lebrun2009c]_
- Tvedt L. 1988, "Second order reliability by an exact integral," proc. of
the IFIP Working Conf. Reliability and Optimization of Structural Systems,
Thoft-Christensen (Ed), pp377-384.
- Zhao Y. G., Ono T., 1999, "New approximations for SORM : part 1", Journal of
Engineering Mechanics, ASCE,125(1), pp 79-85.
- Zhao Y. G., Ono T., 1999, "New approximations for SORM : part 2", Journal of
Engineering Mechanics, ASCE,125(1), pp 86-93.
- Adhikari S., 2004, "Reliability analysis using parabolic failure surface
approximation", Journal of Engineering Mechanics, ASCE,130(12), pp 1407-1427.
|