File: t_AdaptiveDirectionalStratification_hyperplane.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (84 lines) | stat: -rwxr-xr-x 2,700 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#!/usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()


def hyperplane(coefs):
    """
    Generate a linear NMF from its coefficients
    """
    dim = len(coefs)
    constant = [0.0]
    center = [0.0] * len(coefs)
    linear = ot.Matrix(1, dim)
    for i in range(dim):
        linear[0, i] = coefs[i]
    function = ot.LinearFunction(center, constant, linear)
    return function


# To avoid discrepancy on CI
ot.ResourceMap.SetAsScalar("Solver-DefaultResidualError", 1.0e-8)

for dim in [3, 5, 8][1:2]:
    functions = []
    linears = []

    linear = [1.0] * dim
    linears.append(linear)

    function = hyperplane(linear)
    function.setName("H1")
    functions.append(function)

    linear = list(linear)
    linear[0] = 0.25
    linears.append(linear)
    function = hyperplane(linear)
    function.setName("H2")
    functions.append(function)

    linear = list(linear)
    linear = [0.0] * dim
    linear[dim - 1] = 1.0
    linears.append(linear)
    function = hyperplane(linear)
    function.setName("H3")
    functions.append(function)

    for ih in range(len(functions)):
        function = functions[ih]

        distribution = ot.Normal(dim)
        randomVector = ot.RandomVector(distribution)
        composite = ot.CompositeRandomVector(function, randomVector)

        for pft in [1e-4, 1e-6, 1e-8][1:2]:
            k = ot.Normal().computeQuantile(pft)[0] * ot.Point(linears[ih]).norm()
            event = ot.ThresholdEvent(composite, ot.Less(), k)

            print("--------------------")
            print("model H" + str(ih) + " dim=%d" % dim, "pft=%.2e" % pft, "k=%g" % k)

            for n in [100, 1000][1:]:
                for gamma1 in [0.25, 0.5, 0.75][1:2]:
                    # algo = ot.MonteCarlo(event)
                    # algo.setMaximumOuterSampling(100*n)
                    # algo.setMaximumCoefficientOfVariation(-1.)
                    # algo.run()
                    # result = algo.getResult()
                    # print result
                    algo = ot.AdaptiveDirectionalStratification(event)
                    algo.setMaximumOuterSampling(n)
                    algo.setGamma([gamma1, 1.0 - gamma1])
                    calls0 = function.getEvaluationCallsNumber()
                    algo.run()
                    calls = function.getEvaluationCallsNumber() - calls0
                    result = algo.getResult()
                    pf = result.getProbabilityEstimate()
                    var = result.getVarianceEstimate()
                    cov = result.getCoefficientOfVariation()
                    print(result, end=" ")
                    print("callsNumber=%d" % calls + " gamma=" + str(algo.getGamma()))