1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
|
#! /usr/bin/env python
import openturns as ot
ot.TESTPREAMBLE()
# We create a numerical math function
myFunction = ot.SymbolicFunction(["E", "F", "L", "I"], ["-F*L^3/(3*E*I)"])
dim = myFunction.getInputDimension()
# We create a normal distribution point of dimension 1
mean = ot.Point(dim, 0.0)
mean[0] = 50.0 # E
mean[1] = 1.0 # F
mean[2] = 10.0 # L
mean[3] = 5.0 # I
sigma = ot.Point(dim, 1.0)
R = ot.IdentityMatrix(dim)
myDistribution = ot.Normal(mean, sigma, R)
# We create a 'usual' RandomVector from the Distribution
vect = ot.RandomVector(myDistribution)
# We create a composite random vector
output = ot.CompositeRandomVector(myFunction, vect)
# We create an Event from this RandomVector
myEvent = ot.ThresholdEvent(output, ot.Less(), -3.0)
# We create an OptimizationAlgorithm algorithm
myCobyla = ot.Cobyla()
myCobyla.setMaximumCallsNumber(400)
myCobyla.setMaximumAbsoluteError(1.0e-10)
myCobyla.setMaximumRelativeError(1.0e-10)
myCobyla.setMaximumResidualError(1.0e-10)
myCobyla.setMaximumConstraintError(1.0e-10)
print("myCobyla=", myCobyla)
# We create a Analytical algorithm
# The first parameter is an OptimizationAlgorithm
# The second parameter is an event
# The third parameter is a starting point for the design point research
myAlgo = ot.Analytical(myCobyla, myEvent, mean)
print("Analytical=", myAlgo)
print("physical starting point=", myAlgo.getPhysicalStartingPoint())
print("event=", myAlgo.getEvent())
print("nearest point algorithm=", myAlgo.getNearestPointAlgorithm())
print("result=", myAlgo.getAnalyticalResult())
myAlgo.run()
print("result=", myAlgo.getAnalyticalResult())
|