File: t_BlockIndependentCopula_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (234 lines) | stat: -rwxr-xr-x 8,056 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()

# Instantiate one distribution object
R = ot.CorrelationMatrix(3)
R[0, 1] = 0.5
R[0, 2] = 0.25
collection = [ot.FrankCopula(3.0), ot.NormalCopula(R), ot.ClaytonCopula(2.0)]
copula = ot.BlockIndependentCopula(collection)

print("Copula ", repr(copula))
print("Copula ", copula)

# Is this copula elliptical ?
print("Elliptical distribution= ", copula.isElliptical())

# Is this copula continuous ?
print("Continuous = ", copula.isContinuous())

# Is this copula elliptical ?
print("Elliptical = ", copula.hasEllipticalCopula())

# Is this copula independent ?
print("Independent = ", copula.hasIndependentCopula())

# Test for realization of copula
oneRealization = copula.getRealization()
print("oneRealization=", repr(oneRealization))

# Test for sampling
size = 10000
oneSample = copula.getSample(size)
print("oneSample first=", repr(oneSample[0]), " last=", repr(oneSample[size - 1]))
print("mean=", repr(oneSample.computeMean()))
print("covariance=", repr(oneSample.computeCovariance()))

# Define a point
point = ot.Point(copula.getDimension(), 0.6)
print("Point= ", repr(point))

# Show PDF and CDF of point
# Scalar eps(1e-5)
DDF = copula.computeDDF(point)
print("ddf     =", repr(DDF))
PDF = copula.computePDF(point)
print("pdf     =%.6f" % PDF)
CDF = copula.computeCDF(point)
print("cdf=%.6f" % CDF)
#    Point PDFgr = copula.computePDFGradient( point )
#    print "pdf gradient     =", PDFgr
#    Point CDFgr = copula.computeCDFGradient( point )
#    print "cdf gradient     =", CDFgr
quantile = copula.computeQuantile(0.95)
print("quantile=", repr(quantile))
print("cdf(quantile)=%.6f" % copula.computeCDF(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(copula.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
    "Survival(inverseSurvival)=%.6f" % copula.computeSurvivalFunction(inverseSurvival)
)
print("entropy=%.6f" % copula.computeEntropy())
# Confidence regions
if copula.getDimension() <= 2:
    threshold = ot.Point()
    print(
        "Minimum volume interval=", copula.computeMinimumVolumeInterval(0.95, threshold)
    )
    print("threshold=", threshold)
    beta = ot.Point()
    levelSet = copula.computeMinimumVolumeLevelSet(0.95, beta)
    print("Minimum volume level set=", levelSet)
    print("beta=", beta)
    print(
        "Bilateral confidence interval=",
        copula.computeBilateralConfidenceInterval(0.95, beta),
    )
    print("beta=", beta)
    print(
        "Unilateral confidence interval (lower tail)=",
        copula.computeUnilateralConfidenceInterval(0.95, False, beta),
    )
    print("beta=", beta)
    print(
        "Unilateral confidence interval (upper tail)=",
        copula.computeUnilateralConfidenceInterval(0.95, True, beta),
    )
    print("beta=", beta)

mean = copula.getMean()
print("mean=", repr(mean))
covariance = copula.getCovariance()
print("covariance=", repr(covariance))
parameters = copula.getParametersCollection()
print("parameters=", repr(parameters))
# Covariance and correlation
precision = ot.PlatformInfo.GetNumericalPrecision()
ot.PlatformInfo.SetNumericalPrecision(4)
covariance = copula.getCovariance()
print("covariance=", covariance)
correlation = copula.getCorrelation()
print("correlation=", correlation)
spearman = copula.getSpearmanCorrelation()
print("spearman=", spearman)
kendall = copula.getKendallTau()
print("kendall=", kendall)
ot.PlatformInfo.SetNumericalPrecision(precision)
dim = copula.getDimension()
x = 0.6
y = [0.2] * (dim - 1)
print("conditional PDF=%.6f" % copula.computeConditionalPDF(x, y))
print("conditional CDF=%.6f" % copula.computeConditionalCDF(x, y))
print("conditional quantile=%.6f" % copula.computeConditionalQuantile(x, y))
pt = ot.Point([0.1 * i + 0.05 for i in range(dim)])
print("sequential conditional PDF=", copula.computeSequentialConditionalPDF(point))
resCDF = copula.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
    "sequential conditional quantile(",
    resCDF,
    ")=",
    copula.computeSequentialConditionalQuantile(resCDF),
)

# Specific to this copula

# Extract a 5-D marginal
dim = 5
point = ot.Point(dim, 0.25)
indices = ot.Indices(dim, 0)
indices[0] = 1
indices[1] = 2
indices[2] = 3
indices[3] = 5
indices[4] = 6
print("indices=", repr(indices))
margins = copula.getMarginal(indices)
print("margins=", repr(margins))
print("margins PDF=%.6f" % margins.computePDF(point))
print("margins CDF=%.6f" % margins.computeCDF(point))
quantile = margins.computeQuantile(0.95)
print("margins quantile=", repr(quantile))
print("margins CDF(quantile)=%.6f" % margins.computeCDF(quantile))
print("margins realization=", repr(margins.getRealization()))
# Tests the isoprobabilistic transformation
# General case with normal standard distribution
print(
    "isoprobabilistic transformation (general normal)=",
    copula.getIsoProbabilisticTransformation(),
)
# General case with non-normal standard distribution
collection[0] = ot.SklarCopula(
    ot.Student(3.0, ot.Point(2, 1.0), ot.Point(2, 3.0), ot.CorrelationMatrix(2))
)
copula = ot.BlockIndependentCopula(collection)
print(
    "isoprobabilistic transformation (general non-normal)=",
    copula.getIsoProbabilisticTransformation(),
)
dim = copula.getDimension()
x = 0.6
y = [0.2] * (dim - 1)
print("conditional PDF=%.6f" % copula.computeConditionalPDF(x, y))
print("conditional CDF=%.6f" % copula.computeConditionalCDF(x, y))
print("conditional quantile=%.6f" % copula.computeConditionalQuantile(x, y))
pt = ot.Point([0.1 * i + 0.05 for i in range(dim)])
print("sequential conditional PDF=", copula.computeSequentialConditionalPDF(pt))
resCDF = copula.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
    "sequential conditional quantile(",
    resCDF,
    ")=",
    copula.computeSequentialConditionalQuantile(resCDF),
)
# Special case, independent copula
collection[0] = ot.SklarCopula(ot.Normal(2))
collection[1] = ot.IndependentCopula(2)
collection[2] = ot.NormalCopula(ot.CorrelationMatrix(2))
copula = ot.BlockIndependentCopula(collection)
print(
    "isoprobabilistic transformation (independent)=",
    copula.getIsoProbabilisticTransformation(),
)
dim = copula.getDimension()
x = 0.6
y = [0.2] * (dim - 1)
print("conditional PDF=%.6f" % copula.computeConditionalPDF(x, y))
print("conditional CDF=%.6f" % copula.computeConditionalCDF(x, y))
print("conditional quantile=%.6f" % copula.computeConditionalQuantile(x, y))
pt = ot.Point([0.1 * i + 0.05 for i in range(dim)])
print("sequential conditional PDF=", copula.computeSequentialConditionalPDF(pt))
resCDF = copula.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
    "sequential conditional quantile(",
    resCDF,
    ")=",
    copula.computeSequentialConditionalQuantile(resCDF),
)
# Special case, single contributor
collection = [
    ot.SklarCopula(
        ot.Student(3.0, ot.Point(2, 1.0), ot.Point(2, 3.0), ot.CorrelationMatrix(2))
    )
]
copula = ot.BlockIndependentCopula(collection)
print(
    "isoprobabilistic transformation (single contributor)=",
    copula.getIsoProbabilisticTransformation(),
)
dim = copula.getDimension()
x = 0.6
y = [0.2] * (dim - 1)
print("conditional PDF=%.6f" % copula.computeConditionalPDF(x, y))
print("conditional CDF=%.6f" % copula.computeConditionalCDF(x, y))
print("conditional quantile=%.6f" % copula.computeConditionalQuantile(x, y))
pt = ot.Point([0.1 * i + 0.05 for i in range(dim)])
print("sequential conditional PDF=", copula.computeSequentialConditionalPDF(pt))
resCDF = copula.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
    "sequential conditional quantile(",
    resCDF,
    ")=",
    copula.computeSequentialConditionalQuantile(resCDF),
)

# test BlockIndependentCopula.getMarginal in reverse
copula = ot.BlockIndependentCopula([ot.IndependentCopula(2), ot.NormalCopula(2)])
print(copula.getMarginal([3, 2, 1, 0]))