1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
#! /usr/bin/env python
import openturns as ot
ot.TESTPREAMBLE()
# Instantiate one distribution object
R = ot.CorrelationMatrix(3)
R[0, 1] = 0.5
R[0, 2] = 0.25
collection = [ot.FrankCopula(3.0), ot.NormalCopula(R), ot.ClaytonCopula(2.0)]
copula = ot.BlockIndependentCopula(collection)
print("Copula ", repr(copula))
print("Copula ", copula)
# Is this copula elliptical ?
print("Elliptical distribution= ", copula.isElliptical())
# Is this copula continuous ?
print("Continuous = ", copula.isContinuous())
# Is this copula elliptical ?
print("Elliptical = ", copula.hasEllipticalCopula())
# Is this copula independent ?
print("Independent = ", copula.hasIndependentCopula())
# Test for realization of copula
oneRealization = copula.getRealization()
print("oneRealization=", repr(oneRealization))
# Test for sampling
size = 10000
oneSample = copula.getSample(size)
print("oneSample first=", repr(oneSample[0]), " last=", repr(oneSample[size - 1]))
print("mean=", repr(oneSample.computeMean()))
print("covariance=", repr(oneSample.computeCovariance()))
# Define a point
point = ot.Point(copula.getDimension(), 0.6)
print("Point= ", repr(point))
# Show PDF and CDF of point
# Scalar eps(1e-5)
DDF = copula.computeDDF(point)
print("ddf =", repr(DDF))
PDF = copula.computePDF(point)
print("pdf =%.6f" % PDF)
CDF = copula.computeCDF(point)
print("cdf=%.6f" % CDF)
# Point PDFgr = copula.computePDFGradient( point )
# print "pdf gradient =", PDFgr
# Point CDFgr = copula.computeCDFGradient( point )
# print "cdf gradient =", CDFgr
quantile = copula.computeQuantile(0.95)
print("quantile=", repr(quantile))
print("cdf(quantile)=%.6f" % copula.computeCDF(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(copula.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
"Survival(inverseSurvival)=%.6f" % copula.computeSurvivalFunction(inverseSurvival)
)
print("entropy=%.6f" % copula.computeEntropy())
# Confidence regions
if copula.getDimension() <= 2:
threshold = ot.Point()
print(
"Minimum volume interval=", copula.computeMinimumVolumeInterval(0.95, threshold)
)
print("threshold=", threshold)
beta = ot.Point()
levelSet = copula.computeMinimumVolumeLevelSet(0.95, beta)
print("Minimum volume level set=", levelSet)
print("beta=", beta)
print(
"Bilateral confidence interval=",
copula.computeBilateralConfidenceInterval(0.95, beta),
)
print("beta=", beta)
print(
"Unilateral confidence interval (lower tail)=",
copula.computeUnilateralConfidenceInterval(0.95, False, beta),
)
print("beta=", beta)
print(
"Unilateral confidence interval (upper tail)=",
copula.computeUnilateralConfidenceInterval(0.95, True, beta),
)
print("beta=", beta)
mean = copula.getMean()
print("mean=", repr(mean))
covariance = copula.getCovariance()
print("covariance=", repr(covariance))
parameters = copula.getParametersCollection()
print("parameters=", repr(parameters))
# Covariance and correlation
precision = ot.PlatformInfo.GetNumericalPrecision()
ot.PlatformInfo.SetNumericalPrecision(4)
covariance = copula.getCovariance()
print("covariance=", covariance)
correlation = copula.getCorrelation()
print("correlation=", correlation)
spearman = copula.getSpearmanCorrelation()
print("spearman=", spearman)
kendall = copula.getKendallTau()
print("kendall=", kendall)
ot.PlatformInfo.SetNumericalPrecision(precision)
dim = copula.getDimension()
x = 0.6
y = [0.2] * (dim - 1)
print("conditional PDF=%.6f" % copula.computeConditionalPDF(x, y))
print("conditional CDF=%.6f" % copula.computeConditionalCDF(x, y))
print("conditional quantile=%.6f" % copula.computeConditionalQuantile(x, y))
pt = ot.Point([0.1 * i + 0.05 for i in range(dim)])
print("sequential conditional PDF=", copula.computeSequentialConditionalPDF(point))
resCDF = copula.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
"sequential conditional quantile(",
resCDF,
")=",
copula.computeSequentialConditionalQuantile(resCDF),
)
# Specific to this copula
# Extract a 5-D marginal
dim = 5
point = ot.Point(dim, 0.25)
indices = ot.Indices(dim, 0)
indices[0] = 1
indices[1] = 2
indices[2] = 3
indices[3] = 5
indices[4] = 6
print("indices=", repr(indices))
margins = copula.getMarginal(indices)
print("margins=", repr(margins))
print("margins PDF=%.6f" % margins.computePDF(point))
print("margins CDF=%.6f" % margins.computeCDF(point))
quantile = margins.computeQuantile(0.95)
print("margins quantile=", repr(quantile))
print("margins CDF(quantile)=%.6f" % margins.computeCDF(quantile))
print("margins realization=", repr(margins.getRealization()))
# Tests the isoprobabilistic transformation
# General case with normal standard distribution
print(
"isoprobabilistic transformation (general normal)=",
copula.getIsoProbabilisticTransformation(),
)
# General case with non-normal standard distribution
collection[0] = ot.SklarCopula(
ot.Student(3.0, ot.Point(2, 1.0), ot.Point(2, 3.0), ot.CorrelationMatrix(2))
)
copula = ot.BlockIndependentCopula(collection)
print(
"isoprobabilistic transformation (general non-normal)=",
copula.getIsoProbabilisticTransformation(),
)
dim = copula.getDimension()
x = 0.6
y = [0.2] * (dim - 1)
print("conditional PDF=%.6f" % copula.computeConditionalPDF(x, y))
print("conditional CDF=%.6f" % copula.computeConditionalCDF(x, y))
print("conditional quantile=%.6f" % copula.computeConditionalQuantile(x, y))
pt = ot.Point([0.1 * i + 0.05 for i in range(dim)])
print("sequential conditional PDF=", copula.computeSequentialConditionalPDF(pt))
resCDF = copula.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
"sequential conditional quantile(",
resCDF,
")=",
copula.computeSequentialConditionalQuantile(resCDF),
)
# Special case, independent copula
collection[0] = ot.SklarCopula(ot.Normal(2))
collection[1] = ot.IndependentCopula(2)
collection[2] = ot.NormalCopula(ot.CorrelationMatrix(2))
copula = ot.BlockIndependentCopula(collection)
print(
"isoprobabilistic transformation (independent)=",
copula.getIsoProbabilisticTransformation(),
)
dim = copula.getDimension()
x = 0.6
y = [0.2] * (dim - 1)
print("conditional PDF=%.6f" % copula.computeConditionalPDF(x, y))
print("conditional CDF=%.6f" % copula.computeConditionalCDF(x, y))
print("conditional quantile=%.6f" % copula.computeConditionalQuantile(x, y))
pt = ot.Point([0.1 * i + 0.05 for i in range(dim)])
print("sequential conditional PDF=", copula.computeSequentialConditionalPDF(pt))
resCDF = copula.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
"sequential conditional quantile(",
resCDF,
")=",
copula.computeSequentialConditionalQuantile(resCDF),
)
# Special case, single contributor
collection = [
ot.SklarCopula(
ot.Student(3.0, ot.Point(2, 1.0), ot.Point(2, 3.0), ot.CorrelationMatrix(2))
)
]
copula = ot.BlockIndependentCopula(collection)
print(
"isoprobabilistic transformation (single contributor)=",
copula.getIsoProbabilisticTransformation(),
)
dim = copula.getDimension()
x = 0.6
y = [0.2] * (dim - 1)
print("conditional PDF=%.6f" % copula.computeConditionalPDF(x, y))
print("conditional CDF=%.6f" % copula.computeConditionalCDF(x, y))
print("conditional quantile=%.6f" % copula.computeConditionalQuantile(x, y))
pt = ot.Point([0.1 * i + 0.05 for i in range(dim)])
print("sequential conditional PDF=", copula.computeSequentialConditionalPDF(pt))
resCDF = copula.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
"sequential conditional quantile(",
resCDF,
")=",
copula.computeSequentialConditionalQuantile(resCDF),
)
# test BlockIndependentCopula.getMarginal in reverse
copula = ot.BlockIndependentCopula([ot.IndependentCopula(2), ot.NormalCopula(2)])
print(copula.getMarginal([3, 2, 1, 0]))
|