File: t_BlockIndependentDistribution_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (249 lines) | stat: -rwxr-xr-x 8,565 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()

ot.RandomGenerator.SetSeed(0)

# First test: comparison with a Normal distribution with block-diagonal
# correlation
R0 = ot.CorrelationMatrix(2)
R0[0, 1] = 0.5
R1 = ot.CorrelationMatrix(3)
R1[0, 1] = 0.2
R1[0, 2] = 0.1
R1[1, 2] = 0.15
R2 = ot.CorrelationMatrix(2)
R2[0, 1] = 0.3
collection = [
    ot.Normal([0.0] * 2, [1.0] * 2, R0),
    ot.Normal([0.0] * 3, [1.0] * 3, R1),
    ot.Normal([0.0] * 2, [1.0] * 2, R2),
]
distribution = ot.BlockIndependentDistribution(collection)
copulaCollection = [ot.NormalCopula(R0), ot.NormalCopula(R1), ot.NormalCopula(R2)]
copula = ot.BlockIndependentCopula(copulaCollection)
ref = ot.JointDistribution([ot.Normal(0.0, 1.0)] * 7, copula)

# Define a point
point = [0.3] * distribution.getDimension()
print("Point= ", point)

# Show PDF and CDF of point
DDF = distribution.computeDDF(point)
print("ddf      =", DDF)
print("ddf (ref)=", ref.computeDDF(point))
PDF = distribution.computePDF(point)
print("pdf      =%.5f" % PDF)
print("pdf (ref)=%.5f" % ref.computePDF(point))
CDF = distribution.computeCDF(point)
print("cdf      =%.5f" % CDF)
print("cdf (ref)=%.5f" % ref.computeCDF(point))
Survival = distribution.computeSurvivalFunction(point)
print("Survival      =%.5f" % Survival)
print("Survival (ref)=%.5f" % ref.computeSurvivalFunction(point))
InverseSurvival = distribution.computeInverseSurvivalFunction(0.95)
print("Inverse survival      =", InverseSurvival)
print("Inverse survival (ref)=", ref.computeInverseSurvivalFunction(0.95))
print(
    "Survival(inverse survival)=%.5f"
    % distribution.computeSurvivalFunction(InverseSurvival)
)
# Get 50% quantile
quantile = distribution.computeQuantile(0.5)
print("Quantile      =", quantile)
print("Quantile (ref)=", ref.computeQuantile(0.5))
print("CDF(quantile) =%.5f" % distribution.computeCDF(quantile))

ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.setPDFTolerance(4e-3)  # for conditional PDF
validation.run()

# Instantiate one distribution object
R = ot.CorrelationMatrix(3)
R[0, 1] = 0.5
R[0, 2] = 0.25
collection = [
    ot.JointDistribution([ot.Normal()] * 2, ot.AliMikhailHaqCopula(0.5)),
    ot.Normal([1.0] * 3, [2.0] * 3, R),
    ot.JointDistribution([ot.Exponential()] * 2, ot.FrankCopula(0.5)),
]
distribution = ot.BlockIndependentDistribution(collection)
print("Distribution ", distribution)

# Is this distribution elliptical ?
print("Elliptical distribution= ", distribution.isElliptical())

# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())

# Has this distribution an elliptical copula ?
print("Elliptical = ", distribution.hasEllipticalCopula())

# Has this distribution an independent copula ?
print("Independent = ", distribution.hasIndependentCopula())

# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", oneRealization)

# Define a point
point = [0.3] * distribution.getDimension()
print("Point= ", point)

# Show PDF and CDF of point
DDF = distribution.computeDDF(point)
print("ddf     =", DDF)
PDF = distribution.computePDF(point)
print("pdf     =%.5f" % PDF)
CDF = distribution.computeCDF(point)
print("cdf=%.5f" % CDF)
Survival = distribution.computeSurvivalFunction(point)
print("Survival      =%.5f" % Survival)
print("Survival (ref)=%.5f" % distribution.computeSurvivalFunction(point))
InverseSurvival = distribution.computeInverseSurvivalFunction(0.95)
print("Inverse survival=", InverseSurvival)
print(
    "Survival(inverse survival)=%.5f"
    % distribution.computeSurvivalFunction(InverseSurvival)
)
# Get 50% quantile
quantile = distribution.computeQuantile(0.5)
print("Quantile=", quantile)
print("CDF(quantile)=%.5f" % distribution.computeCDF(quantile))

if distribution.getDimension() <= 2:
    # Confidence regions
    (
        interval,
        threshold,
    ) = distribution.computeMinimumVolumeIntervalWithMarginalProbability(0.95)
    print("Minimum volume interval=", interval)
    print("threshold=%.5f" % threshold)
    levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
    print("Minimum volume level set=", levelSet)
    print("beta=%.5f" % beta)
    (
        interval,
        beta,
    ) = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(0.95)
    print("Bilateral confidence interval=", interval)
    print("beta=%.5f" % beta)
    (
        interval,
        beta,
    ) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
        0.95, False
    )
    print("Unilateral confidence interval (lower tail)=", interval)
    print("beta=%.5f" % beta)
    (
        interval,
        beta,
    ) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
        0.95, True
    )
    print("Unilateral confidence interval (upper tail)=", interval)
    print("beta=%.5f" % beta)

print("entropy     =%.5f" % distribution.computeEntropy())

mean = distribution.getMean()
# Ensure mean is [0,0,1,1,1,1,1]
# Following platform, the value slightly differs
ott.assert_almost_equal(distribution.getMean(), [0, 0, 1, 1, 1, 1, 1])

standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", repr(standardDeviation))
skewness = distribution.getSkewness()
# print("skewness=", repr(skewness))
kurtosis = distribution.getKurtosis()
print("kurtosis=", repr(kurtosis))

dim = distribution.getDimension()
x = 0.6
y = [0.2] * (dim - 1)
print("conditional PDF=%.5f" % distribution.computeConditionalPDF(x, y))
print("conditional CDF=%.5f" % distribution.computeConditionalCDF(x, y))
print("conditional quantile=%.5f" % distribution.computeConditionalQuantile(x, y))
pt = ot.Point(dim)
for i in range(dim):
    pt[i] = 0.1 * i + 0.05
print("sequential conditional PDF=", distribution.computeSequentialConditionalPDF(pt))
resCDF = distribution.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
    "sequential conditional quantile(",
    resCDF,
    ")=",
    distribution.computeSequentialConditionalQuantile(resCDF),
)

# Extract a 5-D marginal
dim = 5
point = [0.25] * dim
indices = [1, 2, 3, 5, 6]
print("indices=", indices)
margins = distribution.getMarginal(indices)
print("margins=", margins)
print("margins PDF=%.5f" % margins.computePDF(point))
print("margins CDF=%.5f" % margins.computeCDF(point))
quantile = margins.computeQuantile(0.95)
print("margins quantile=", quantile)
print("margins CDF(quantile)=%.5f" % margins.computeCDF(quantile))
print("margins realization=", margins.getRealization())
# Tests o the isoprobabilistic transformation
# General case with normal standard distribution
print(
    "isoprobabilistic transformation (general normal)=",
    distribution.getIsoProbabilisticTransformation(),
)
# General case with non-normal standard distribution
collection[0] = ot.SklarCopula(
    ot.Student(3.0, [1.0] * 2, [3.0] * 2, ot.CorrelationMatrix(2))
)
collection.append(ot.Triangular(2.0, 3.0, 4.0))
distribution = ot.BlockIndependentDistribution(collection)
print(
    "isoprobabilistic transformation (general non-normal)=",
    distribution.getIsoProbabilisticTransformation(),
)
dim = distribution.getDimension()
x = 2.6
y = [0.2] * (dim - 1)
q = 0.9
print("conditional PDF=%.5f" % distribution.computeConditionalPDF(x, y))
print("conditional CDF=%.5f" % distribution.computeConditionalCDF(x, y))
print("conditional quantile=%.5f" % distribution.computeConditionalQuantile(q, y))
pt = ot.Point(dim)
for i in range(dim):
    pt[i] = 0.1 * i + 0.05
print("sequential conditional PDF=", distribution.computeSequentialConditionalPDF(pt))
resCDF = distribution.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
    "sequential conditional quantile(",
    resCDF,
    ")=",
    distribution.computeSequentialConditionalQuantile(resCDF),
)
print("range=", distribution.getRange())

# getStandardDeviation vs Dirac
distribution2 = ot.BlockIndependentDistribution([ot.Normal(), ot.Dirac(1800)])
ott.assert_almost_equal(distribution2.getStandardDeviation(), [1, 0])

# check marginal from a group is not uselessly wrapped in BlockIndependent
margins = distribution.getMarginal([0, 1])
ott.assert_almost_equal(margins, collection[0])

# check getSupport
distribution = ot.BlockIndependentDistribution(
    [ot.Multinomial(5, ot.Point(2, 0.25))] * 2
)
support = distribution.getSupport(ot.Interval([2] * 4, [5] * 4))
print(support)
assert support.getSize() == 9