1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
ot.RandomGenerator.SetSeed(0)
# First test: comparison with a Normal distribution with block-diagonal
# correlation
R0 = ot.CorrelationMatrix(2)
R0[0, 1] = 0.5
R1 = ot.CorrelationMatrix(3)
R1[0, 1] = 0.2
R1[0, 2] = 0.1
R1[1, 2] = 0.15
R2 = ot.CorrelationMatrix(2)
R2[0, 1] = 0.3
collection = [
ot.Normal([0.0] * 2, [1.0] * 2, R0),
ot.Normal([0.0] * 3, [1.0] * 3, R1),
ot.Normal([0.0] * 2, [1.0] * 2, R2),
]
distribution = ot.BlockIndependentDistribution(collection)
copulaCollection = [ot.NormalCopula(R0), ot.NormalCopula(R1), ot.NormalCopula(R2)]
copula = ot.BlockIndependentCopula(copulaCollection)
ref = ot.JointDistribution([ot.Normal(0.0, 1.0)] * 7, copula)
# Define a point
point = [0.3] * distribution.getDimension()
print("Point= ", point)
# Show PDF and CDF of point
DDF = distribution.computeDDF(point)
print("ddf =", DDF)
print("ddf (ref)=", ref.computeDDF(point))
PDF = distribution.computePDF(point)
print("pdf =%.5f" % PDF)
print("pdf (ref)=%.5f" % ref.computePDF(point))
CDF = distribution.computeCDF(point)
print("cdf =%.5f" % CDF)
print("cdf (ref)=%.5f" % ref.computeCDF(point))
Survival = distribution.computeSurvivalFunction(point)
print("Survival =%.5f" % Survival)
print("Survival (ref)=%.5f" % ref.computeSurvivalFunction(point))
InverseSurvival = distribution.computeInverseSurvivalFunction(0.95)
print("Inverse survival =", InverseSurvival)
print("Inverse survival (ref)=", ref.computeInverseSurvivalFunction(0.95))
print(
"Survival(inverse survival)=%.5f"
% distribution.computeSurvivalFunction(InverseSurvival)
)
# Get 50% quantile
quantile = distribution.computeQuantile(0.5)
print("Quantile =", quantile)
print("Quantile (ref)=", ref.computeQuantile(0.5))
print("CDF(quantile) =%.5f" % distribution.computeCDF(quantile))
ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.setPDFTolerance(4e-3) # for conditional PDF
validation.run()
# Instantiate one distribution object
R = ot.CorrelationMatrix(3)
R[0, 1] = 0.5
R[0, 2] = 0.25
collection = [
ot.JointDistribution([ot.Normal()] * 2, ot.AliMikhailHaqCopula(0.5)),
ot.Normal([1.0] * 3, [2.0] * 3, R),
ot.JointDistribution([ot.Exponential()] * 2, ot.FrankCopula(0.5)),
]
distribution = ot.BlockIndependentDistribution(collection)
print("Distribution ", distribution)
# Is this distribution elliptical ?
print("Elliptical distribution= ", distribution.isElliptical())
# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())
# Has this distribution an elliptical copula ?
print("Elliptical = ", distribution.hasEllipticalCopula())
# Has this distribution an independent copula ?
print("Independent = ", distribution.hasIndependentCopula())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", oneRealization)
# Define a point
point = [0.3] * distribution.getDimension()
print("Point= ", point)
# Show PDF and CDF of point
DDF = distribution.computeDDF(point)
print("ddf =", DDF)
PDF = distribution.computePDF(point)
print("pdf =%.5f" % PDF)
CDF = distribution.computeCDF(point)
print("cdf=%.5f" % CDF)
Survival = distribution.computeSurvivalFunction(point)
print("Survival =%.5f" % Survival)
print("Survival (ref)=%.5f" % distribution.computeSurvivalFunction(point))
InverseSurvival = distribution.computeInverseSurvivalFunction(0.95)
print("Inverse survival=", InverseSurvival)
print(
"Survival(inverse survival)=%.5f"
% distribution.computeSurvivalFunction(InverseSurvival)
)
# Get 50% quantile
quantile = distribution.computeQuantile(0.5)
print("Quantile=", quantile)
print("CDF(quantile)=%.5f" % distribution.computeCDF(quantile))
if distribution.getDimension() <= 2:
# Confidence regions
(
interval,
threshold,
) = distribution.computeMinimumVolumeIntervalWithMarginalProbability(0.95)
print("Minimum volume interval=", interval)
print("threshold=%.5f" % threshold)
levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
print("Minimum volume level set=", levelSet)
print("beta=%.5f" % beta)
(
interval,
beta,
) = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(0.95)
print("Bilateral confidence interval=", interval)
print("beta=%.5f" % beta)
(
interval,
beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
0.95, False
)
print("Unilateral confidence interval (lower tail)=", interval)
print("beta=%.5f" % beta)
(
interval,
beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
0.95, True
)
print("Unilateral confidence interval (upper tail)=", interval)
print("beta=%.5f" % beta)
print("entropy =%.5f" % distribution.computeEntropy())
mean = distribution.getMean()
# Ensure mean is [0,0,1,1,1,1,1]
# Following platform, the value slightly differs
ott.assert_almost_equal(distribution.getMean(), [0, 0, 1, 1, 1, 1, 1])
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", repr(standardDeviation))
skewness = distribution.getSkewness()
# print("skewness=", repr(skewness))
kurtosis = distribution.getKurtosis()
print("kurtosis=", repr(kurtosis))
dim = distribution.getDimension()
x = 0.6
y = [0.2] * (dim - 1)
print("conditional PDF=%.5f" % distribution.computeConditionalPDF(x, y))
print("conditional CDF=%.5f" % distribution.computeConditionalCDF(x, y))
print("conditional quantile=%.5f" % distribution.computeConditionalQuantile(x, y))
pt = ot.Point(dim)
for i in range(dim):
pt[i] = 0.1 * i + 0.05
print("sequential conditional PDF=", distribution.computeSequentialConditionalPDF(pt))
resCDF = distribution.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
"sequential conditional quantile(",
resCDF,
")=",
distribution.computeSequentialConditionalQuantile(resCDF),
)
# Extract a 5-D marginal
dim = 5
point = [0.25] * dim
indices = [1, 2, 3, 5, 6]
print("indices=", indices)
margins = distribution.getMarginal(indices)
print("margins=", margins)
print("margins PDF=%.5f" % margins.computePDF(point))
print("margins CDF=%.5f" % margins.computeCDF(point))
quantile = margins.computeQuantile(0.95)
print("margins quantile=", quantile)
print("margins CDF(quantile)=%.5f" % margins.computeCDF(quantile))
print("margins realization=", margins.getRealization())
# Tests o the isoprobabilistic transformation
# General case with normal standard distribution
print(
"isoprobabilistic transformation (general normal)=",
distribution.getIsoProbabilisticTransformation(),
)
# General case with non-normal standard distribution
collection[0] = ot.SklarCopula(
ot.Student(3.0, [1.0] * 2, [3.0] * 2, ot.CorrelationMatrix(2))
)
collection.append(ot.Triangular(2.0, 3.0, 4.0))
distribution = ot.BlockIndependentDistribution(collection)
print(
"isoprobabilistic transformation (general non-normal)=",
distribution.getIsoProbabilisticTransformation(),
)
dim = distribution.getDimension()
x = 2.6
y = [0.2] * (dim - 1)
q = 0.9
print("conditional PDF=%.5f" % distribution.computeConditionalPDF(x, y))
print("conditional CDF=%.5f" % distribution.computeConditionalCDF(x, y))
print("conditional quantile=%.5f" % distribution.computeConditionalQuantile(q, y))
pt = ot.Point(dim)
for i in range(dim):
pt[i] = 0.1 * i + 0.05
print("sequential conditional PDF=", distribution.computeSequentialConditionalPDF(pt))
resCDF = distribution.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
"sequential conditional quantile(",
resCDF,
")=",
distribution.computeSequentialConditionalQuantile(resCDF),
)
print("range=", distribution.getRange())
# getStandardDeviation vs Dirac
distribution2 = ot.BlockIndependentDistribution([ot.Normal(), ot.Dirac(1800)])
ott.assert_almost_equal(distribution2.getStandardDeviation(), [1, 0])
# check marginal from a group is not uselessly wrapped in BlockIndependent
margins = distribution.getMarginal([0, 1])
ott.assert_almost_equal(margins, collection[0])
# check getSupport
distribution = ot.BlockIndependentDistribution(
[ot.Multinomial(5, ot.Point(2, 0.25))] * 2
)
support = distribution.getSupport(ot.Interval([2] * 4, [5] * 4))
print(support)
assert support.getSize() == 9
|