File: t_BoxCoxTransform_std.expout

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (214 lines) | stat: -rw-r--r-- 5,996 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
myBoxCox= BoxCox(lambda=[0.2], shift=[0])
myBoxCox input dimension =  1
myBoxCox output dimension =  1
input time series =
      [ t        X0       ]
  0 : [  0       11.8246  ]
  1 : [  0.1      6.20148 ]
  2 : [  0.2      8.6852  ]
  3 : [  0.3     13.6164  ]
  4 : [  0.4      3.45584 ]
  5 : [  0.5     11.0501  ]
  6 : [  0.6      8.93498 ]
  7 : [  0.7     14.3117  ]
  8 : [  0.8     12.432   ]
  9 : [  0.9     12.3795  ]
 10 : [  1        8.58842 ]
 11 : [  1.1     10.7831  ]
 12 : [  1.2      3.12981 ]
 13 : [  1.3      6.15134 ]
 14 : [  1.4      6.06466 ]
 15 : [  1.5      9.72765 ]
 16 : [  1.6     12.9874  ]
 17 : [  1.7      9.58164 ]
 18 : [  1.8      8.31938 ]
 19 : [  1.9     11.3365  ]
 20 : [  2       10.9688  ]
 21 : [  2.1     11.3374  ]
 22 : [  2.2      6.88577 ]
 23 : [  2.3      7.42986 ]
 24 : [  2.4     11.4209  ]
 25 : [  2.5      9.62351 ]
 26 : [  2.6     11.0543  ]
 27 : [  2.7     15.3471  ]
 28 : [  2.8     10.2106  ]
 29 : [  2.9      7.6559  ]
 30 : [  3        7.8354  ]
 31 : [  3.1      9.27633 ]
 32 : [  3.2      4.63611 ]
 33 : [  3.3     11.2041  ]
 34 : [  3.4     14.1035  ]
 35 : [  3.5     13.013   ]
 36 : [  3.6     12.2246  ]
 37 : [  3.7      9.86916 ]
 38 : [  3.8     11.618   ]
 39 : [  3.9     10.8999  ]
 40 : [  4       11.2232  ]
 41 : [  4.1      8.54466 ]
 42 : [  4.2      8.85102 ]
 43 : [  4.3      7.74155 ]
 44 : [  4.4     10.7738  ]
 45 : [  4.5     15.9063  ]
 46 : [  4.6      7.98613 ]
 47 : [  4.7     15.5674  ]
 48 : [  4.8     10.1565  ]
 49 : [  4.9     12.3713  ]
 50 : [  5       12.1491  ]
 51 : [  5.1      7.76913 ]
 52 : [  5.2     10.5531  ]
 53 : [  5.3      5.4078  ]
 54 : [  5.4     11.9651  ]
 55 : [  5.5     11.6142  ]
 56 : [  5.6     15.2146  ]
 57 : [  5.7      7.12383 ]
 58 : [  5.8     11.1338  ]
 59 : [  5.9      9.45699 ]
 60 : [  6       15.0189  ]
 61 : [  6.1      6.88312 ]
 62 : [  6.2      8.93934 ]
 63 : [  6.3     13.6414  ]
 64 : [  6.4      7.6689  ]
 65 : [  6.5      5.89441 ]
 66 : [  6.6     10.3104  ]
 67 : [  6.7      7.32454 ]
 68 : [  6.8     12.7168  ]
 69 : [  6.9     11.0044  ]
 70 : [  7        8.54908 ]
 71 : [  7.1     12.0339  ]
 72 : [  7.2     15.1281  ]
 73 : [  7.3     13.2119  ]
 74 : [  7.4      8.47923 ]
 75 : [  7.5      5.01741 ]
 76 : [  7.6     16.7387  ]
 77 : [  7.7     12.2788  ]
 78 : [  7.8      8.46771 ]
 79 : [  7.9      8.1008  ]
 80 : [  8        7.12878 ]
 81 : [  8.1     11.6321  ]
 82 : [  8.2     12.4437  ]
 83 : [  8.3      7.79587 ]
 84 : [  8.4      9.66562 ]
 85 : [  8.5     12.9834  ]
 86 : [  8.6      9.51812 ]
 87 : [  8.7      7.18369 ]
 88 : [  8.8      4.09393 ]
 89 : [  8.9      8.02719 ]
 90 : [  9       11.0163  ]
 91 : [  9.1     13.0467  ]
 92 : [  9.2     11.9115  ]
 93 : [  9.3      9.73028 ]
 94 : [  9.4      7.43234 ]
 95 : [  9.5     13.8138  ]
 96 : [  9.6      9.28524 ]
 97 : [  9.7     13.9789  ]
 98 : [  9.8     16.359   ]
 99 : [  9.9      7.29526 ]
100 : [ 10        5.44911 ]
output time series = 
      [ t        y0       ]
  0 : [  0        3.19459 ]
  1 : [  0.1      2.20226 ]
  2 : [  0.2      2.70417 ]
  3 : [  0.3      3.42913 ]
  4 : [  0.4      1.40739 ]
  5 : [  0.5      3.08432 ]
  6 : [  0.6      2.74798 ]
  7 : [  0.7      3.51351 ]
  8 : [  0.8      3.2771  ]
  9 : [  0.9      3.27009 ]
 10 : [  1        2.68693 ]
 11 : [  1.1      3.04486 ]
 12 : [  1.2      1.28165 ]
 13 : [  1.3      2.19058 ]
 14 : [  1.4      2.1702  ]
 15 : [  1.5      2.88082 ]
 16 : [  1.6      3.34977 ]
 17 : [  1.7      2.85702 ]
 18 : [  1.8      2.63815 ]
 19 : [  1.9      3.12579 ]
 20 : [  2        3.07238 ]
 21 : [  2.1      3.12592 ]
 22 : [  2.2      2.35462 ]
 23 : [  2.3      2.46734 ]
 24 : [  2.4      3.13785 ]
 25 : [  2.5      2.86388 ]
 26 : [  2.6      3.08492 ]
 27 : [  2.7      3.63327 ]
 28 : [  2.8      2.95757 ]
 29 : [  2.9      2.51224 ]
 30 : [  3        2.54714 ]
 31 : [  3.1      2.8063  ]
 32 : [  3.2      1.79518 ]
 33 : [  3.3      3.10672 ]
 34 : [  3.4      3.48858 ]
 35 : [  3.5      3.35306 ]
 36 : [  3.6      3.2493  ]
 37 : [  3.7      2.90362 ]
 38 : [  3.8      3.16576 ]
 39 : [  3.9      3.06221 ]
 40 : [  4        3.10948 ]
 41 : [  4.1      2.67908 ]
 42 : [  4.2      2.73337 ]
 43 : [  4.3      2.52897 ]
 44 : [  4.4      3.04347 ]
 45 : [  4.5      3.69528 ]
 46 : [  4.6      2.57595 ]
 47 : [  4.7      3.65791 ]
 48 : [  4.8      2.94911 ]
 49 : [  4.9      3.26901 ]
 50 : [  5        3.23908 ]
 51 : [  5.1      2.53433 ]
 52 : [  5.2      3.01024 ]
 53 : [  5.3      2.00768 ]
 54 : [  5.4      3.21397 ]
 55 : [  5.5      3.16522 ]
 56 : [  5.6      3.61831 ]
 57 : [  5.7      2.40479 ]
 58 : [  5.8      3.09652 ]
 59 : [  5.9      2.83647 ]
 60 : [  6        3.59602 ]
 61 : [  6.1      2.35406 ]
 62 : [  6.2      2.74874 ]
 63 : [  6.3      3.43222 ]
 64 : [  6.4      2.51479 ]
 65 : [  6.5      2.12948 ]
 66 : [  6.6      2.97306 ]
 67 : [  6.7      2.44605 ]
 68 : [  6.8      3.31468 ]
 69 : [  6.9      3.07761 ]
 70 : [  7        2.67987 ]
 71 : [  7.1      3.22339 ]
 72 : [  7.2      3.60849 ]
 73 : [  7.3      3.37843 ]
 74 : [  7.4      2.66728 ]
 75 : [  7.5      1.90345 ]
 76 : [  7.6      3.78444 ]
 77 : [  7.7      3.2566  ]
 78 : [  7.8      2.66519 ]
 79 : [  7.9      2.59759 ]
 80 : [  8        2.40582 ]
 81 : [  8.1      3.16774 ]
 82 : [  8.2      3.27866 ]
 83 : [  8.3      2.53951 ]
 84 : [  8.4      2.87075 ]
 85 : [  8.5      3.34926 ]
 86 : [  8.6      2.84658 ]
 87 : [  8.7      2.41719 ]
 88 : [  8.8      1.62824 ]
 89 : [  8.9      2.58373 ]
 90 : [  9        3.07936 ]
 91 : [  9.1      3.35738 ]
 92 : [  9.2      3.2066  ]
 93 : [  9.3      2.88125 ]
 94 : [  9.4      2.46784 ]
 95 : [  9.5      3.45343 ]
 96 : [  9.6      2.8078  ]
 97 : [  9.7      3.47353 ]
 98 : [  9.8      3.74423 ]
 99 : [  9.9      2.44009 ]
100 : [ 10        2.01835 ]
gradient= [[ 1.7411 ]]
hessian= sheet #0
[[ -2.78576 ]]
myInverseBoxCox =  InverseBoxCox(lambda=[0.2], shift=[0])
number of call(s) :  101