1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
import sys
ot.TESTPREAMBLE()
ot.PlatformInfo.SetNumericalPrecision(3)
ot.Log.Show(ot.Log.ALL)
def progress(percent):
sys.stderr.write("-- progress=" + str(percent) + "%\n")
def stop():
sys.stderr.write("-- stop?\n")
return False
algoNames = ot.Ceres.GetAlgorithmNames()
print(algoNames)
# unconstrained optimization: rosenbrock x*=(1,1), x*=(0.7864, 0.6177) on unit disk
dim = 2
f = ot.SymbolicFunction(["x1", "x2"], ["1+100*(x2-x1^2)^2+(1-x1)^2"])
startingPoint = [1e-3] * dim
p_ref = [1.0] * dim
for algoName in algoNames:
if algoName in ["LEVENBERG_MARQUARDT", "DOGLEG"]:
# only test general optimization algorithms
continue
for minimization in [True, False]:
if algoName == "NONLINEAR_CONJUGATE_GRADIENT" and not minimization:
# goes very far and the function cannot evaluate
continue
print("algoName=", algoName, "minimization=", minimization)
problem = ot.OptimizationProblem(f)
problem.setMinimization(minimization)
algo = ot.Ceres(problem, algoName)
algo.setMaximumIterationNumber(100000)
algo.setStartingPoint(startingPoint)
# algo.setProgressCallback(progress)
# algo.setStopCallback(stop)
algo.run()
result = algo.getResult()
x_star = result.getOptimalPoint()
if minimization and algoName != "STEEPEST_DESCENT":
ott.assert_almost_equal(x_star, p_ref, 5e-2)
print(result)
# least-squares optimization
n = 3
m = 10
x = [[0.5 + i] for i in range(m)]
model = ot.SymbolicFunction(["a", "b", "c", "x"], ["a + b * exp(min(500, c * x))"])
p_ref = [2.8, 1.2, 0.5] # a, b, c
modelx = ot.ParametricFunction(model, [0, 1, 2], p_ref)
y = modelx(x)
def residualFunction_py(p):
modelx = ot.ParametricFunction(model, [0, 1, 2], p)
return [modelx(x[i])[0] - y[i, 0] for i in range(m)]
residualFunction = ot.PythonFunction(n, m, residualFunction_py)
bounds = ot.Interval([0, 0, 0], [2.5, 8.0, 19])
for algoName in algoNames:
line_search = not (algoName in ["LEVENBERG_MARQUARDT", "DOGLEG"])
for bound in [True, False]:
if bound and line_search:
# line search do not support bound constraints
continue
print("algoName=", algoName, "bound=", bound)
problem = ot.LeastSquaresProblem(residualFunction)
if bound:
problem.setBounds(bounds)
startingPoint = [1.0] * n
algo = ot.Ceres(problem, algoName)
algo.setStartingPoint(startingPoint)
# algo.setProgressCallback(progress)
# algo.setStopCallback(stop)
algo.setMaximumIterationNumber(10000)
algo.run()
result = algo.getResult()
x_star = result.getOptimalPoint()
print(result)
if bound:
assert x_star in bounds, "optimal point not in bounds"
else:
if not line_search:
# line search algorithms converge less well
ott.assert_almost_equal(x_star, p_ref, 0.1)
|