File: t_CleaningStrategy_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (39 lines) | stat: -rw-r--r-- 1,016 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()

dimension = 3

# Create the orthogonal basis
enumerateFunction = ot.LinearEnumerateFunction(dimension)
productBasis = ot.OrthogonalProductPolynomialFactory(
    [ot.LegendreFactory()] * dimension, enumerateFunction
)

degree = 6
basisSize = enumerateFunction.getBasisSizeFromTotalDegree(degree)
maximumDimension = 100
maximumSize = 20
significanceFactor = 1e-4
adaptiveStrategy = ot.CleaningStrategy(
    productBasis, maximumDimension, maximumSize, significanceFactor
)

assert adaptiveStrategy.involvesModelSelection() is True

adaptiveStrategy.computeInitialBasis()
assert adaptiveStrategy.getCurrentVectorIndex() == 20

psi = adaptiveStrategy.getPsi()
assert len(psi) == 20

alpha_k = [3.5, 0.1, 0.0, -0.2, 0.0, 0.3, 0.0, -0.4, 0.0, -0.5]
residual = 0.0
relativeError = 0.0
adaptiveStrategy.updateBasis(alpha_k, residual, relativeError)

psi = adaptiveStrategy.getPsi()
assert len(psi) == 7
assert adaptiveStrategy.getCurrentVectorIndex() == 21