File: t_Cobyla_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (83 lines) | stat: -rwxr-xr-x 2,419 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#! /usr/bin/env python

import openturns as ot
import math as m

ot.TESTPREAMBLE()


def printPoint(point, digits):
    oss = "["
    eps = pow(0.1, digits)
    format = "%." + str(digits) + "f"
    for i in range(point.getDimension()):
        if i == 0:
            sep = ""
        else:
            sep = ","
        if m.fabs(point[i]) < eps:
            oss += sep + format % m.fabs(point[i])
        else:
            oss += sep + format % point[i]
        sep = ","
    oss += "]"
    return oss


# linear
levelFunction = ot.SymbolicFunction(["x1", "x2", "x3", "x4"], ["x1+2*x2-3*x3+4*x4"])
startingPoint = ot.Point(4, 0.0)
algo = ot.Cobyla(ot.NearestPointProblem(levelFunction, 3.0))
algo.setStartingPoint(startingPoint)
print("algo=", algo)
algo.run()
result = algo.getResult()
print("x^=", printPoint(result.getOptimalPoint(), 4))
print("f(x^)=", printPoint(result.getOptimalValue(), 4))
print("lambda^=", printPoint(result.computeLagrangeMultipliers(), 4))

# non-linear
levelFunction = ot.SymbolicFunction(
    ["x1", "x2", "x3", "x4"], ["x1*cos(x1)+2*x2*x3-3*x3+4*x3*x4"]
)
startingPoint = ot.Point(4, 0.0)
algo = ot.Cobyla(ot.NearestPointProblem(levelFunction, 3.0))
algo.setStartingPoint(startingPoint)
algo.setMaximumCallsNumber(400)
algo.setMaximumAbsoluteError(1.0e-10)
algo.setMaximumRelativeError(1.0e-10)
algo.setMaximumResidualError(1.0e-10)
algo.setMaximumConstraintError(1.0e-10)
algo.run()
result = algo.getResult()
print("x^=", printPoint(result.getOptimalPoint(), 4))
print("f(x^)=", printPoint(result.getOptimalValue(), 4))
print("lambda^=", printPoint(result.computeLagrangeMultipliers(), 4))

# bounds
linear = ot.SymbolicFunction(["x1", "x2", "x3", "x4"], ["x1+2*x2-3*x3+4*x4"])

dim = 4
startingPoint = [0.0] * dim

bounds = ot.Interval([-3.0] * dim, [5.0] * dim)

for minimization in [True, False]:
    problem = ot.OptimizationProblem(linear, ot.Function(), ot.Function(), bounds)
    problem.setMinimization(minimization)
    algo = ot.Cobyla(problem)
    algo.setMaximumCallsNumber(150)
    algo.setStartingPoint(startingPoint)
    print("algo=", algo)
    algo.run()
    result = algo.getResult()
    print("x^=", printPoint(result.getOptimalPoint(), 4))
    print("f(x^)=", printPoint(result.getOptimalValue(), 4))
    print("lambda^=", printPoint(result.computeLagrangeMultipliers(), 4))

# empty problem
algo = ot.Cobyla()
try:
    algo.run()
except Exception:
    print("OK")