File: t_ComplexMatrix_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (168 lines) | stat: -rwxr-xr-x 4,269 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#! /usr/bin/env python

import openturns as ot
import math as m

ot.TESTPREAMBLE()


# DEFAULT CONSTRUCTOR AND STRING CONVERTER
print("test 0 : default constructor and string converter")

# Default constructor
matrix0 = ot.ComplexMatrix()

# String converter
print("matrix0 = ", repr(matrix0))

# CONSTRUCTOR WITH SIZE, OPERATOR() AND STRING CONVERTER
print("test number one : constructor with size, operator() and string converter")

# Constructor with size
matrix1 = ot.ComplexMatrix(2, 2)

# Check operator() methods
matrix1[0, 0] = 1.0 + 1j
matrix1[1, 0] = 2.0 + 4j
matrix1[0, 1] = 3.0 - 1j
matrix1[1, 1] = 4.0

# String converter
print("matrix1 = ", repr(matrix1))

# COPY CONSTRUCTOR AND STRING CONVERTER
print("test 2 : copy constructor and string converter")

# Copy constructor
matrix2 = ot.ComplexMatrix(matrix1)

# String converter
print("matrix2 = ", repr(matrix2))

# GET DIMENSIONS METHODS
print("test 3 : dimension methods")

# Get dimension methods
print("matrix1's nbRows = ", matrix1.getNbRows())
print("matrix1's nbColumns = ", matrix1.getNbColumns())

# CONSTRUCTOR WITH COLLECTION
print("test 4 : constructor with collection method")

# Create the collection of values
elementsValues = ot.ComplexCollection()
elementsValues.add(1.0 - 1j)
elementsValues.add(2.0 - 1j)
elementsValues.add(3.0 - 1j)
elementsValues.add(4.0 + 1j)
elementsValues.add(5.0 + 1j)
elementsValues.add(6.0 + 1j)

# Check the content of the collection
print("elementsValues = ", repr(elementsValues))

# Check the constructor with collection
matrix0bis = ot.ComplexMatrix(2, 2, elementsValues)
print("matrix0bis = ", repr(matrix0bis))

# TRANSPOSITION METHOD AND CONJUGATE METHOD
print("test 5 : transposition / conjugate method")

# Check transpose method
matrix4 = matrix1.transpose()
matrix5 = matrix1.conjugate()
print("matrix1 transposed = ", repr(matrix4))
print("matrix1 conjugated = ", repr(matrix5))

# TRANSPOSITION AND CONJUGATE COUPLED METHOD
print("transposition and conjugate method")

# Check transpose method
matrix6 = matrix1.conjugateTranspose()
print("matrix1 conjugated and transposed = ", repr(matrix6))

# ADDITION METHOD
print("test 6 : addition method")

# Check addition method : we check the operator and the symmetry of the
# operator, thus testing the comparison operator
sum1 = matrix1 + matrix4
sum2 = matrix4 + matrix1
print("sum1 = ", repr(sum1))
print("sum2 = ", repr(sum2))
print("sum1 equals sum2 = ", sum1 == sum2)

# SUBTRACTION METHOD
print("test 7 : subtraction method")

# Check subtraction method
diff = matrix1 - matrix4
print("diff = ", repr(diff))

#  MATRIX MULTIPLICATION METHOD
print("test 8 : matrix multiplication method")

# Check multiplication method
prod = matrix1 * matrix4
print("prod = ", repr(prod))

# MULTIPLICATION WITH A NUMERICAL POINT METHOD
print("test 9 : multiplication with a numerical point method")

# Create the numerical point
pt = ot.Point()
pt.add(1.0)
pt.add(2.0)
print("pt = ", repr(pt))

# Check the product method
ptResult = matrix1 * pt
print("ptResult = ", repr(ptResult))

#  MULTIPLICATION AND DIVISION BY A NUMERICAL SCALAR METHODS
print("test 10 : multiplication and division by a numerical scalar methods")

# Check the multiplication method
s = 3.0 + 1j
scalprod1 = matrix1 * s
print("scalprod1 = ", repr(scalprod1))

# Check the division method
scaldiv1 = matrix1 / s
print("scaldiv1 = ", repr(scaldiv1))

#  ISEMPTY METHOD
print("test 10 : isEmpty method")

# Check method isEmpty
matrix7 = ot.ComplexMatrix()
matrix8 = ot.ComplexMatrix()

print("matrix1 is empty = ", matrix1.isEmpty())
print("matrix5 is empty = ", matrix7.isEmpty())
print("matrix6 is empty = ", matrix8.isEmpty())
print("matrix0 is empty = ", matrix0.isEmpty())

# MULTIPLICATION WITH A NUMERICAL POINT METHOD
print("test 11 : multiplication with a numerical point method")

# Create the numerical point
pt_test = ot.Point()
pt_test.add(1.0)
pt_test.add(2.0)
print("pt_test = ", repr(pt_test))

A = ot.ComplexMatrix(2, 2)
A[0, 0] = 0.5
A[1, 0] = -(m.sqrt(3.0) / 2)
A[0, 1] = m.sqrt(3.0) / 2
A[1, 1] = 0.5
B = A.transpose()
identity = B * A

# Check the product method
ptResult2 = identity * pt_test
print("A = ", repr(A))
print("B = ", repr(B))
print("identity = ", repr(identity))
print("ptResult2 = ", repr(ptResult2))