File: t_CompositeDistribution_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (132 lines) | stat: -rwxr-xr-x 4,682 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()

# Instantiate one distribution object
f = ot.SymbolicFunction("x", "x^2 + 2 * sin(x)")
distribution = ot.CompositeDistribution(f, ot.Normal())
print("Distribution ", repr(distribution))
print("Distribution ", distribution)

# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())

# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())

# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", oneRealization)

# Test for sampling
size = 10000
oneSample = distribution.getSample(size)
print("oneSample first=", oneSample[0], " last=", oneSample[size - 1])
print("mean=", oneSample.computeMean())
print("covariance=", oneSample.computeCovariance())

# Define a point
point = ot.Point(distribution.getDimension(), 1.0)
print("Point= ", point)

# Show PDF and CDF of point
DDF = distribution.computeDDF(point)
print("ddf     =", DDF)
LPDF = distribution.computeLogPDF(point)
print("log pdf= %.12g" % LPDF)
PDF = distribution.computePDF(point)
print("pdf     = %.10g" % PDF)

CDF = distribution.computeCDF(point)
print("cdf= %.12g" % CDF)
CCDF = distribution.computeComplementaryCDF(point)
print("ccdf= %.12g" % CCDF)
Survival = distribution.computeSurvivalFunction(point)
print("survival= %.12g" % Survival)
quantile = distribution.computeQuantile(0.95)
print("quantile=", quantile)
print("cdf(quantile)= %.12g" % distribution.computeCDF(quantile))
quantileTail = distribution.computeQuantile(0.95, True)
print("quantile (tail)=", quantileTail)
CDFTail = distribution.computeComplementaryCDF(quantileTail)
print("cdf (tail)= %.12g" % CDFTail)
# Get 95% survival function
inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
    "Survival(inverseSurvival)=%.6f"
    % distribution.computeSurvivalFunction(inverseSurvival)
)

# Confidence regions
interval, threshold = distribution.computeMinimumVolumeIntervalWithMarginalProbability(
    0.95
)
print("Minimum volume interval=", interval)
print("threshold=", ot.Point(1, threshold))
levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
print("Minimum volume level set=", levelSet)
print("beta=", ot.Point(1, beta))
interval, beta = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(
    0.95
)
print("Bilateral confidence interval=", interval)
print("beta=", ot.Point(1, beta))
(
    interval,
    beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, False)
print("Unilateral confidence interval (lower tail)=", interval)
print("beta=", ot.Point(1, beta))
(
    interval,
    beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, True)
print("Unilateral confidence interval (upper tail)=", interval)
print("beta=", ot.Point(1, beta))

CF = distribution.computeCharacteristicFunction(point[0])
print("characteristic function=(%.6g+%.6gj)" % (CF.real, CF.imag))
LCF = distribution.computeLogCharacteristicFunction(point[0])
print("log characteristic function=(%.6g+%.6gj)" % (LCF.real, LCF.imag))
PDFgr = distribution.computePDFGradient(point)
print("pdf gradient     =", PDFgr)
CDFgr = distribution.computeCDFGradient(point)
print("cdf gradient     =", CDFgr)
mean = distribution.getMean()
print("mean=", mean)
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", standardDeviation)
skewness = distribution.getSkewness()
print("skewness=", skewness)
kurtosis = distribution.getKurtosis()
print("kurtosis=", kurtosis)
covariance = distribution.getCovariance()
print("covariance=", covariance)
correlation = distribution.getCorrelation()
print("correlation=", correlation)
spearman = distribution.getSpearmanCorrelation()
print("spearman=", spearman)
kendall = distribution.getKendallTau()
print("kendall=", kendall)
parameters = distribution.getParametersCollection()
print("parameters=", parameters)
print("Standard representative=", distribution.getStandardRepresentative())

# Specific to this distribution
antecedent = distribution.getAntecedent()
print("antecedent=", antecedent)
function = distribution.getFunction()
print("function=", function)
newDistribution = ot.CompositeDistribution(function, antecedent)
print("newDistribution=", newDistribution)

ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.skipEntropy()  # slow
validation.skipMinimumVolumeInterval()  # wrong proba
validation.skipMinimumVolumeLevelSet()  # slow
validation.run()