1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
# Instantiate one distribution object
f = ot.SymbolicFunction("x", "x^2 + 2 * sin(x)")
distribution = ot.CompositeDistribution(f, ot.Normal())
print("Distribution ", repr(distribution))
print("Distribution ", distribution)
# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())
# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", oneRealization)
# Test for sampling
size = 10000
oneSample = distribution.getSample(size)
print("oneSample first=", oneSample[0], " last=", oneSample[size - 1])
print("mean=", oneSample.computeMean())
print("covariance=", oneSample.computeCovariance())
# Define a point
point = ot.Point(distribution.getDimension(), 1.0)
print("Point= ", point)
# Show PDF and CDF of point
DDF = distribution.computeDDF(point)
print("ddf =", DDF)
LPDF = distribution.computeLogPDF(point)
print("log pdf= %.12g" % LPDF)
PDF = distribution.computePDF(point)
print("pdf = %.10g" % PDF)
CDF = distribution.computeCDF(point)
print("cdf= %.12g" % CDF)
CCDF = distribution.computeComplementaryCDF(point)
print("ccdf= %.12g" % CCDF)
Survival = distribution.computeSurvivalFunction(point)
print("survival= %.12g" % Survival)
quantile = distribution.computeQuantile(0.95)
print("quantile=", quantile)
print("cdf(quantile)= %.12g" % distribution.computeCDF(quantile))
quantileTail = distribution.computeQuantile(0.95, True)
print("quantile (tail)=", quantileTail)
CDFTail = distribution.computeComplementaryCDF(quantileTail)
print("cdf (tail)= %.12g" % CDFTail)
# Get 95% survival function
inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
"Survival(inverseSurvival)=%.6f"
% distribution.computeSurvivalFunction(inverseSurvival)
)
# Confidence regions
interval, threshold = distribution.computeMinimumVolumeIntervalWithMarginalProbability(
0.95
)
print("Minimum volume interval=", interval)
print("threshold=", ot.Point(1, threshold))
levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
print("Minimum volume level set=", levelSet)
print("beta=", ot.Point(1, beta))
interval, beta = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(
0.95
)
print("Bilateral confidence interval=", interval)
print("beta=", ot.Point(1, beta))
(
interval,
beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, False)
print("Unilateral confidence interval (lower tail)=", interval)
print("beta=", ot.Point(1, beta))
(
interval,
beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(0.95, True)
print("Unilateral confidence interval (upper tail)=", interval)
print("beta=", ot.Point(1, beta))
CF = distribution.computeCharacteristicFunction(point[0])
print("characteristic function=(%.6g+%.6gj)" % (CF.real, CF.imag))
LCF = distribution.computeLogCharacteristicFunction(point[0])
print("log characteristic function=(%.6g+%.6gj)" % (LCF.real, LCF.imag))
PDFgr = distribution.computePDFGradient(point)
print("pdf gradient =", PDFgr)
CDFgr = distribution.computeCDFGradient(point)
print("cdf gradient =", CDFgr)
mean = distribution.getMean()
print("mean=", mean)
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", standardDeviation)
skewness = distribution.getSkewness()
print("skewness=", skewness)
kurtosis = distribution.getKurtosis()
print("kurtosis=", kurtosis)
covariance = distribution.getCovariance()
print("covariance=", covariance)
correlation = distribution.getCorrelation()
print("correlation=", correlation)
spearman = distribution.getSpearmanCorrelation()
print("spearman=", spearman)
kendall = distribution.getKendallTau()
print("kendall=", kendall)
parameters = distribution.getParametersCollection()
print("parameters=", parameters)
print("Standard representative=", distribution.getStandardRepresentative())
# Specific to this distribution
antecedent = distribution.getAntecedent()
print("antecedent=", antecedent)
function = distribution.getFunction()
print("function=", function)
newDistribution = ot.CompositeDistribution(function, antecedent)
print("newDistribution=", newDistribution)
ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.skipEntropy() # slow
validation.skipMinimumVolumeInterval() # wrong proba
validation.skipMinimumVolumeLevelSet() # slow
validation.run()
|