1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
# Instantiate one distribution object
graph = ot.BipartiteGraph([[0, 1], [0, 1]])
distribution = ot.CumulativeDistributionNetwork([ot.Normal(2)] * 2, graph)
print("Distribution ", repr(distribution))
print("Distribution ", distribution)
# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())
# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", oneRealization)
# Test for sampling
size = 10000
oneSample = distribution.getSample(size)
print("oneSample first=", oneSample[0], " last=", oneSample[size - 1])
print("mean=", oneSample.computeMean())
print("covariance=", oneSample.computeCovariance())
# Define a point
point = [1.0] * distribution.getDimension()
print("Point= ", point)
# Show PDF and CDF of point
LPDF = distribution.computeLogPDF(point)
print("log pdf =%.4e" % LPDF)
PDF = distribution.computePDF(point)
print("pdf =%.4e" % PDF)
CDF = distribution.computeCDF(point)
print("cdf =%.4e" % CDF)
CCDF = distribution.computeComplementaryCDF(point)
print("ccdf =%.4e" % CCDF)
Survival = distribution.computeSurvivalFunction(point)
print("survival=%.4e" % Survival)
quantile = distribution.computeQuantile(0.95)
print("quantile=", quantile)
print("cdf(quantile)= %.12g" % distribution.computeCDF(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
"Survival(inverseSurvival)=%.6f"
% distribution.computeSurvivalFunction(inverseSurvival)
)
# Confidence regions. Some computations take ages so they are commented
if distribution.getDimension() <= 2:
# interval, threshold = distribution.computeMinimumVolumeIntervalWithMarginalProbability(0.95)
# print("Minimum volume interval=", interval)
# print("threshold=", ot.Point(1, threshold))
# levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
# print("Minimum volume level set=", levelSet)
# print("beta=", ot.Point(1, beta))
# interval, beta = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(0.95)
# print("Bilateral confidence interval=", interval)
# print("beta=", ot.Point(1, beta))
(
interval,
beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
0.95, False
)
print("Unilateral confidence interval (lower tail)=", interval)
print("beta=", ot.Point(1, beta))
(
interval,
beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
0.95, True
)
print("Unilateral confidence interval (upper tail)=", interval)
print("beta=", ot.Point(1, beta))
mean = distribution.getMean()
print("mean=", mean)
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", standardDeviation)
skewness = distribution.getSkewness()
print("skewness=", skewness)
kurtosis = distribution.getKurtosis()
print("kurtosis=", kurtosis)
covariance = distribution.getCovariance()
print("covariance=", covariance)
correlation = distribution.getCorrelation()
print("correlation=", correlation)
spearman = distribution.getSpearmanCorrelation()
print("spearman=", spearman)
kendall = distribution.getKendallTau()
print("kendall=", kendall)
# Build a distribution with no specific implementation of getMarginal()
atom = ot.JointDistribution([ot.Uniform(0.0, 1.0)] * 3)
graph = ot.BipartiteGraph([[0, 1, 2], [0, 1, 2]])
distribution = ot.CumulativeDistributionNetwork([atom] * 2, graph)
# Extract its marginal using the generic implementation
marginal = distribution.getMarginal([0, 1])
# Build by hands the exact marginal
atom_ref = ot.JointDistribution([ot.Uniform(0.0, 1.0)] * 2)
graph_ref = ot.BipartiteGraph([[0, 1], [0, 1]])
ref = ot.CumulativeDistributionNetwork([atom_ref] * 2, graph_ref)
# test getMarginal generic implementation
print(ref)
print(distribution.getMarginal([0, 1]))
X = atom_ref.getSample(10000)
error = (
ref.computeCDF(X) - distribution.getMarginal([0, 1]).computeCDF(X)
).computeStandardDeviation()
ott.assert_almost_equal(error[0], 0.0)
# test getMarginal with full indices
print(distribution)
print(distribution.getMarginal([0, 1, 2]))
ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.skipMoments() # slow
validation.skipCorrelation() # slow
validation.skipConditional() # FIXME
validation.skipTransformation() # FIXME
validation.run()
|