File: t_CumulativeDistributionNetwork_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (133 lines) | stat: -rwxr-xr-x 4,717 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()

# Instantiate one distribution object
graph = ot.BipartiteGraph([[0, 1], [0, 1]])
distribution = ot.CumulativeDistributionNetwork([ot.Normal(2)] * 2, graph)
print("Distribution ", repr(distribution))
print("Distribution ", distribution)

# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())

# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())

# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", oneRealization)

# Test for sampling
size = 10000
oneSample = distribution.getSample(size)
print("oneSample first=", oneSample[0], " last=", oneSample[size - 1])
print("mean=", oneSample.computeMean())
print("covariance=", oneSample.computeCovariance())

# Define a point
point = [1.0] * distribution.getDimension()
print("Point= ", point)

# Show PDF and CDF of point
LPDF = distribution.computeLogPDF(point)
print("log pdf =%.4e" % LPDF)
PDF = distribution.computePDF(point)
print("pdf     =%.4e" % PDF)
CDF = distribution.computeCDF(point)
print("cdf     =%.4e" % CDF)
CCDF = distribution.computeComplementaryCDF(point)
print("ccdf    =%.4e" % CCDF)
Survival = distribution.computeSurvivalFunction(point)
print("survival=%.4e" % Survival)
quantile = distribution.computeQuantile(0.95)
print("quantile=", quantile)
print("cdf(quantile)= %.12g" % distribution.computeCDF(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
    "Survival(inverseSurvival)=%.6f"
    % distribution.computeSurvivalFunction(inverseSurvival)
)
# Confidence regions. Some computations take ages so they are commented
if distribution.getDimension() <= 2:
    # interval, threshold = distribution.computeMinimumVolumeIntervalWithMarginalProbability(0.95)
    # print("Minimum volume interval=", interval)
    # print("threshold=", ot.Point(1, threshold))
    # levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
    # print("Minimum volume level set=", levelSet)
    # print("beta=", ot.Point(1, beta))
    # interval, beta = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(0.95)
    # print("Bilateral confidence interval=", interval)
    # print("beta=", ot.Point(1, beta))
    (
        interval,
        beta,
    ) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
        0.95, False
    )
    print("Unilateral confidence interval (lower tail)=", interval)
    print("beta=", ot.Point(1, beta))
    (
        interval,
        beta,
    ) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
        0.95, True
    )
    print("Unilateral confidence interval (upper tail)=", interval)
    print("beta=", ot.Point(1, beta))

mean = distribution.getMean()
print("mean=", mean)
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", standardDeviation)
skewness = distribution.getSkewness()
print("skewness=", skewness)
kurtosis = distribution.getKurtosis()
print("kurtosis=", kurtosis)
covariance = distribution.getCovariance()
print("covariance=", covariance)
correlation = distribution.getCorrelation()
print("correlation=", correlation)
spearman = distribution.getSpearmanCorrelation()
print("spearman=", spearman)
kendall = distribution.getKendallTau()
print("kendall=", kendall)

# Build a distribution with no specific implementation of getMarginal()
atom = ot.JointDistribution([ot.Uniform(0.0, 1.0)] * 3)
graph = ot.BipartiteGraph([[0, 1, 2], [0, 1, 2]])
distribution = ot.CumulativeDistributionNetwork([atom] * 2, graph)

# Extract its marginal using the generic implementation
marginal = distribution.getMarginal([0, 1])

# Build by hands the exact marginal
atom_ref = ot.JointDistribution([ot.Uniform(0.0, 1.0)] * 2)
graph_ref = ot.BipartiteGraph([[0, 1], [0, 1]])
ref = ot.CumulativeDistributionNetwork([atom_ref] * 2, graph_ref)

# test getMarginal generic implementation
print(ref)
print(distribution.getMarginal([0, 1]))
X = atom_ref.getSample(10000)
error = (
    ref.computeCDF(X) - distribution.getMarginal([0, 1]).computeCDF(X)
).computeStandardDeviation()
ott.assert_almost_equal(error[0], 0.0)

# test getMarginal with full indices
print(distribution)
print(distribution.getMarginal([0, 1, 2]))

ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.skipMoments()  # slow
validation.skipCorrelation()  # slow
validation.skipConditional()  # FIXME
validation.skipTransformation()  # FIXME
validation.run()