1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
# Multivariate case
coll2 = ot.DistributionCollection(0)
coll2.add(ot.Dirac(1))
coll2.add(ot.Dirac(2))
coll2.add(ot.Bernoulli(0.7))
coll2.add(ot.Uniform(3.0, 4.0))
d2 = ot.JointDistribution(coll2)
coll1 = ot.DistributionCollection(0)
coll1.add(ot.Uniform())
coll1.add(ot.Uniform())
d1 = ot.JointDistribution(coll1)
# Test the different DOE
ot.ResourceMap.SetAsUnsignedInteger(
"DeconditionedDistribution-MarginalIntegrationNodesNumber", 256
)
ot.ResourceMap.SetAsUnsignedInteger(
"DeconditionedDistribution-MaximumIntegrationNodesNumber", 10000
)
for method in ["GaussProduct", "QMC", "MC"]:
print("#" * 50)
print("method=", method)
ot.ResourceMap.SetAsString(
"DeconditionedDistribution-ContinuousDiscretizationMethod", method
)
distribution = ot.DeconditionedDistribution(d1, d2)
dim = distribution.getDimension()
print("distribution=", distribution)
print("Parameters ", distribution.getParametersCollection())
print("Mean ", distribution.getMean())
cov = distribution.getCovariance()
cov_ref = ot.CovarianceMatrix([[0.0833333, 0.0], [0.0, 0.751111]])
ott.assert_almost_equal(cov, cov_ref, 1e-3, 1e-3)
# Is this distribution an elliptical distribution?
print("Elliptical distribution= ", distribution.isElliptical())
# Has this distribution an elliptical copula?
print("Elliptical copula= ", distribution.hasEllipticalCopula())
# Has this distribution an independent copula?
print("Independent copula= ", distribution.hasIndependentCopula())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", oneRealization)
# Test for sampling
size = 10
oneSample = distribution.getSample(size)
print("oneSample=", oneSample)
# Test for sampling
size = 10000
anotherSample = distribution.getSample(size)
print("anotherSample mean=", anotherSample.computeMean())
print("anotherSample covariance=", anotherSample.computeCovariance())
# Define a point
zero = ot.Point(dim, 0.0)
# Show PDF and CDF of zero point
zeroPDF = distribution.computePDF(zero)
zeroCDF = distribution.computeCDF(zero)
print("Zero point= ", zero, " pdf=", zeroPDF, " cdf=", zeroCDF)
# Get 95% quantile
quantile = distribution.computeQuantile(0.95)
print("Quantile=", quantile)
print("CDF(quantile)= %.5g" % distribution.computeCDF(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
"Survival(inverseSurvival)=%.6f"
% distribution.computeSurvivalFunction(inverseSurvival)
)
# Confidence regions
# interval, threshold = distribution.computeMinimumVolumeIntervalWithMarginalProbability(0.95)
# print("Minimum volume interval=", interval)
# print("threshold=", Point(1, threshold))
# levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
# print("Minimum volume level set=", levelSet)
# print("beta=", Point(1, beta))
# interval, beta = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(0.95)
# print("Bilateral confidence interval=", interval)
# print("beta=", Point(1, beta))
(
interval,
beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
0.95, False
)
print("Unilateral confidence interval (lower tail)=", interval)
print("beta=", ot.Point(1, beta))
(
interval,
beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
0.95, True
)
print("Unilateral confidence interval (upper tail)=", interval)
print("beta=", ot.Point(1, beta))
# "
# 1D tests
# Create a collection of distribution
conditionedDistribution = ot.Normal()
conditioningDistributionCollection = ot.DistributionCollection(0)
# First conditioning distribution: continuous/continuous
atoms = ot.DistributionCollection(0)
atoms.add(ot.Uniform(0.0, 1.0))
atoms.add(ot.Uniform(1.0, 2.0))
conditioningDistributionCollection.add(ot.JointDistribution(atoms))
# Second conditioning distribution: discrete/continuous
atoms = ot.DistributionCollection(0)
atoms.add(ot.Binomial(3, 0.5))
atoms.add(ot.Uniform(1.0, 2.0))
conditioningDistributionCollection.add(ot.JointDistribution(atoms))
# Third conditioning distribution: dirac/continuous
atoms = ot.DistributionCollection(0)
atoms.add(ot.Dirac(0.5))
atoms.add(ot.Uniform(1.0, 2.0))
conditioningDistributionCollection.add(ot.JointDistribution(atoms))
for i in range(conditioningDistributionCollection.getSize()):
print("conditioning distribution=", conditioningDistributionCollection[i])
distribution = ot.DeconditionedDistribution(
conditionedDistribution, conditioningDistributionCollection[i]
)
dim = distribution.getDimension()
print("Distribution ", distribution)
print("Parameters ", distribution.getParametersCollection())
print("Mean ", distribution.getMean())
print("Covariance ", distribution.getCovariance())
# Is this distribution an elliptical distribution?
print("Elliptical distribution= ", distribution.isElliptical())
# Has this distribution an elliptical copula?
print("Elliptical copula= ", distribution.hasEllipticalCopula())
# Has this distribution an independent copula?
print("Independent copula= ", distribution.hasIndependentCopula())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", oneRealization)
# Test for sampling
size = 10
oneSample = distribution.getSample(size)
print("oneSample=", oneSample)
# Test for sampling
size = 10000
anotherSample = distribution.getSample(size)
print("anotherSample mean=", anotherSample.computeMean())
print("anotherSample covariance=", anotherSample.computeCovariance())
# Define a point
zero = ot.Point(dim, 0.0)
# Show PDF and CDF of zero point
zeroPDF = distribution.computePDF(zero)
zeroCDF = distribution.computeCDF(zero)
print("Zero point= ", zero, " pdf=%.6f" % zeroPDF, " cdf=%.6f" % zeroCDF)
# Get 95% quantile
quantile = distribution.computeQuantile(0.95)
print("Quantile=", quantile)
print("CDF(quantile)= %.12g" % distribution.computeCDF(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
"Survival(inverseSurvival)=%.6f"
% distribution.computeSurvivalFunction(inverseSurvival)
)
|