File: t_DeconditionedDistribution_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (179 lines) | stat: -rwxr-xr-x 6,820 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()

# Multivariate case
coll2 = ot.DistributionCollection(0)
coll2.add(ot.Dirac(1))
coll2.add(ot.Dirac(2))
coll2.add(ot.Bernoulli(0.7))
coll2.add(ot.Uniform(3.0, 4.0))
d2 = ot.JointDistribution(coll2)
coll1 = ot.DistributionCollection(0)
coll1.add(ot.Uniform())
coll1.add(ot.Uniform())
d1 = ot.JointDistribution(coll1)
# Test the different DOE
ot.ResourceMap.SetAsUnsignedInteger(
    "DeconditionedDistribution-MarginalIntegrationNodesNumber", 256
)
ot.ResourceMap.SetAsUnsignedInteger(
    "DeconditionedDistribution-MaximumIntegrationNodesNumber", 10000
)
for method in ["GaussProduct", "QMC", "MC"]:
    print("#" * 50)
    print("method=", method)
    ot.ResourceMap.SetAsString(
        "DeconditionedDistribution-ContinuousDiscretizationMethod", method
    )
    distribution = ot.DeconditionedDistribution(d1, d2)
    dim = distribution.getDimension()
    print("distribution=", distribution)
    print("Parameters ", distribution.getParametersCollection())
    print("Mean ", distribution.getMean())
    cov = distribution.getCovariance()
    cov_ref = ot.CovarianceMatrix([[0.0833333, 0.0], [0.0, 0.751111]])
    ott.assert_almost_equal(cov, cov_ref, 1e-3, 1e-3)
    # Is this distribution an elliptical distribution?
    print("Elliptical distribution= ", distribution.isElliptical())
    # Has this distribution an elliptical copula?
    print("Elliptical copula= ", distribution.hasEllipticalCopula())
    # Has this distribution an independent copula?
    print("Independent copula= ", distribution.hasIndependentCopula())
    # Test for realization of distribution
    oneRealization = distribution.getRealization()
    print("oneRealization=", oneRealization)
    # Test for sampling
    size = 10
    oneSample = distribution.getSample(size)
    print("oneSample=", oneSample)

    # Test for sampling
    size = 10000
    anotherSample = distribution.getSample(size)
    print("anotherSample mean=", anotherSample.computeMean())
    print("anotherSample covariance=", anotherSample.computeCovariance())

    # Define a point
    zero = ot.Point(dim, 0.0)

    # Show PDF and CDF of zero point
    zeroPDF = distribution.computePDF(zero)
    zeroCDF = distribution.computeCDF(zero)
    print("Zero point= ", zero, " pdf=", zeroPDF, " cdf=", zeroCDF)

    # Get 95% quantile
    quantile = distribution.computeQuantile(0.95)
    print("Quantile=", quantile)
    print("CDF(quantile)= %.5g" % distribution.computeCDF(quantile))
    # Get 95% survival function
    inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
    print("InverseSurvival=", repr(inverseSurvival))
    print(
        "Survival(inverseSurvival)=%.6f"
        % distribution.computeSurvivalFunction(inverseSurvival)
    )

    # Confidence regions
    # interval, threshold = distribution.computeMinimumVolumeIntervalWithMarginalProbability(0.95)
    # print("Minimum volume interval=", interval)
    # print("threshold=", Point(1, threshold))
    # levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
    # print("Minimum volume level set=", levelSet)
    # print("beta=", Point(1, beta))
    # interval, beta = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(0.95)
    # print("Bilateral confidence interval=", interval)
    # print("beta=", Point(1, beta))
    (
        interval,
        beta,
    ) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
        0.95, False
    )
    print("Unilateral confidence interval (lower tail)=", interval)
    print("beta=", ot.Point(1, beta))
    (
        interval,
        beta,
    ) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
        0.95, True
    )
    print("Unilateral confidence interval (upper tail)=", interval)
    print("beta=", ot.Point(1, beta))

# "
# 1D tests
# Create a collection of distribution
conditionedDistribution = ot.Normal()
conditioningDistributionCollection = ot.DistributionCollection(0)
# First conditioning distribution: continuous/continuous
atoms = ot.DistributionCollection(0)
atoms.add(ot.Uniform(0.0, 1.0))
atoms.add(ot.Uniform(1.0, 2.0))
conditioningDistributionCollection.add(ot.JointDistribution(atoms))
# Second conditioning distribution: discrete/continuous
atoms = ot.DistributionCollection(0)
atoms.add(ot.Binomial(3, 0.5))
atoms.add(ot.Uniform(1.0, 2.0))
conditioningDistributionCollection.add(ot.JointDistribution(atoms))
# Third conditioning distribution: dirac/continuous
atoms = ot.DistributionCollection(0)
atoms.add(ot.Dirac(0.5))
atoms.add(ot.Uniform(1.0, 2.0))
conditioningDistributionCollection.add(ot.JointDistribution(atoms))
for i in range(conditioningDistributionCollection.getSize()):
    print("conditioning distribution=", conditioningDistributionCollection[i])
    distribution = ot.DeconditionedDistribution(
        conditionedDistribution, conditioningDistributionCollection[i]
    )
    dim = distribution.getDimension()
    print("Distribution ", distribution)
    print("Parameters ", distribution.getParametersCollection())
    print("Mean ", distribution.getMean())
    print("Covariance ", distribution.getCovariance())
    # Is this distribution an elliptical distribution?
    print("Elliptical distribution= ", distribution.isElliptical())

    # Has this distribution an elliptical copula?
    print("Elliptical copula= ", distribution.hasEllipticalCopula())

    # Has this distribution an independent copula?
    print("Independent copula= ", distribution.hasIndependentCopula())

    # Test for realization of distribution
    oneRealization = distribution.getRealization()
    print("oneRealization=", oneRealization)

    # Test for sampling
    size = 10
    oneSample = distribution.getSample(size)
    print("oneSample=", oneSample)

    # Test for sampling
    size = 10000
    anotherSample = distribution.getSample(size)
    print("anotherSample mean=", anotherSample.computeMean())
    print("anotherSample covariance=", anotherSample.computeCovariance())

    # Define a point
    zero = ot.Point(dim, 0.0)

    # Show PDF and CDF of zero point
    zeroPDF = distribution.computePDF(zero)
    zeroCDF = distribution.computeCDF(zero)
    print("Zero point= ", zero, " pdf=%.6f" % zeroPDF, " cdf=%.6f" % zeroCDF)

    # Get 95% quantile
    quantile = distribution.computeQuantile(0.95)
    print("Quantile=", quantile)
    print("CDF(quantile)= %.12g" % distribution.computeCDF(quantile))
    # Get 95% survival function
    inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
    print("InverseSurvival=", repr(inverseSurvival))
    print(
        "Survival(inverseSurvival)=%.6f"
        % distribution.computeSurvivalFunction(inverseSurvival)
    )