1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
# 1D tests
distribution = ot.Dirac(0.7)
print("Distribution ", distribution)
# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())
# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", oneRealization)
# Test for sampling
size = 10000
oneSample = distribution.getSample(size)
print("oneSample first=", oneSample[0], " last=", oneSample[size - 1])
print("mean=", oneSample.computeMean())
sampleCovariance = oneSample.computeCovariance()[0, 0]
if abs(sampleCovariance) < 1.0e-16:
sampleCovariance = 0.0
print("covariance=", sampleCovariance)
# Define a point
point = ot.Point(distribution.getDimension(), 0.0)
print("Point= ", point)
# Show PDF and CDF of point
PDF = distribution.computePDF(point)
print("pdf =", PDF)
print(
"pdf (FD)=",
(
distribution.computeCDF(point + ot.Point(1, 0))
- distribution.computeCDF(point + ot.Point(1, -1))
),
)
CDF = distribution.computeCDF(point)
print("cdf=", CDF)
# Define a point
point = ot.Point(distribution.getSupport(distribution.getRange())[0])
print("Point= ", point)
# Show PDF and CDF of point
PDF = distribution.computePDF(point)
print("pdf =", PDF)
print(
"pdf (FD)=",
(
distribution.computeCDF(point + ot.Point(1, 0))
- distribution.computeCDF(point + ot.Point(1, -1))
),
)
CDF = distribution.computeCDF(point)
print("cdf=", CDF)
CF = distribution.computeCharacteristicFunction(0.5)
print("characteristic function= (%.12g%+.12gj)" % (CF.real, CF.imag))
GF = distribution.computeGeneratingFunction(0.5 + 0.3j)
print("generating function= (%.12g%+.12gj)" % (GF.real, GF.imag))
quantile = distribution.computeQuantile(0.95)
# Test invalid quantile
try:
q12 = distribution.computeScalarQuantile(1.2)
raise ValueError(f"Expected a TypeError but got quantile(1.2) = {q12}")
except TypeError:
pass
print("quantile=", quantile)
print("cdf(quantile)=", distribution.computeCDF(quantile))
print("entropy=%.6f" % distribution.computeEntropy())
mean = distribution.getMean()
print("mean=", mean)
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", standardDeviation)
skewness = distribution.getSkewness()
print("skewness=", skewness)
kurtosis = distribution.getKurtosis()
print("kurtosis=", kurtosis)
covariance = distribution.getCovariance()
print("covariance=", covariance)
parameters = distribution.getParametersCollection()
print("parameters=", parameters)
print("Standard representative=", distribution.getStandardRepresentative())
# N-D tests
dim = 4
distribution = ot.Dirac(ot.Point(dim, 2.3))
print("Distribution ", distribution)
# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())
# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", oneRealization)
# Test for sampling
size = 10000
oneSample = distribution.getSample(size)
print("oneSample first=", oneSample[0], " last=", oneSample[size - 1])
print("mean=", oneSample.computeMean())
sampleCovariance = oneSample.computeCovariance()
for i in range(dim):
for j in range(i + 1):
if abs(sampleCovariance[i, j]) < 1.0e-16:
sampleCovariance[i, j] = 0.0
print("covariance=", sampleCovariance)
# Define a point
point = ot.Point(dim, 0.0)
print("Point= ", point)
# Show PDF and CDF of point
PDF = distribution.computePDF(point)
print("pdf =", PDF)
print(
"pdf (FD)=",
(
distribution.computeCDF(point + ot.Point(dim, 0))
- distribution.computeCDF(point + ot.Point(dim, -1))
),
)
CDF = distribution.computeCDF(point)
print("cdf=", CDF)
# Define a point
point = ot.Point(distribution.getSupport(distribution.getRange())[0])
print("Point= ", point)
# Show PDF and CDF of point
PDF = distribution.computePDF(point)
print("pdf =", PDF)
print(
"pdf (FD)=",
(
distribution.computeCDF(point + ot.Point(dim, 0))
- distribution.computeCDF(point + ot.Point(dim, -1))
),
)
CDF = distribution.computeCDF(point)
print("cdf=", CDF)
quantile = distribution.computeQuantile(0.95)
print("quantile=", quantile)
print("cdf(quantile)=", distribution.computeCDF(quantile))
mean = distribution.getMean()
print("mean=", mean)
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", standardDeviation)
skewness = distribution.getSkewness()
print("skewness=", skewness)
kurtosis = distribution.getKurtosis()
print("kurtosis=", kurtosis)
covariance = distribution.getCovariance()
print("covariance=", covariance)
parameters = distribution.getParametersCollection()
print("parameters=", parameters)
print("Standard representative=", distribution.getStandardRepresentative())
ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.skipMoments()
validation.skipCorrelation()
validation.skipConditional() # FIXME
validation.run()
|