File: t_DirectionalSampling_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (81 lines) | stat: -rwxr-xr-x 2,330 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()

# We create a numerical math function
myFunction = ot.SymbolicFunction(("E", "F", "L", "I"), ("-F*L^3/(3.*E*I)",))

dim = myFunction.getInputDimension()
# We create a normal distribution point of dimension 1
mean = ot.Point(dim, 0.0)
# E
mean[0] = 50.0
# F
mean[1] = 1.0
# L
mean[2] = 10.0
# I
mean[3] = 5.0
sigma = ot.Point(dim, 1.0)
R = ot.IdentityMatrix(dim)
myDistribution = ot.Normal(mean, sigma, R)

# We create a 'usual' RandomVector from the Distribution
vect = ot.RandomVector(myDistribution)

# We create a composite random vector */
output = ot.CompositeRandomVector(myFunction, vect)

# We create an Event from this RandomVector */
myEvent = ot.ThresholdEvent(output, ot.Less(), -3)

# TEST ONE : directional sampling from an event (slow and safe strategy by default)
# We create a Directional Sampling algorithm */
myAlgo = ot.DirectionalSampling(myEvent)
myAlgo.setMaximumOuterSampling(250)
myAlgo.setBlockSize(4)
myAlgo.setMaximumCoefficientOfVariation(0.1)

print("DirectionalSampling=", myAlgo)

# Perform the simulation */
myAlgo.run()

# Stream out the result */
print("DirectionalSampling result=", myAlgo.getResult())

# TEST TWO : diectional sampling from an event and a root strategy : Risky And Fast, and a directional sampling strategy :
# We create a Directional Sampling algorithm */
myAlgo2 = ot.DirectionalSampling(myEvent, ot.MediumSafe(), ot.OrthogonalDirection())
myAlgo2.setMaximumOuterSampling(250)
myAlgo2.setBlockSize(4)
myAlgo2.setMaximumCoefficientOfVariation(0.1)

print("DirectionalSampling=", myAlgo2)

# Perform the simulation */
myAlgo2.run()

# Stream out the result */
print("DirectionalSampling result=", myAlgo2.getResult())

# Ticket #778
myFunction = ot.SymbolicFunction("x", "x")

X1 = ot.RandomVector(ot.Uniform(-2, 1.99999))
X2 = ot.RandomVector(ot.Uniform(-2, 2.0))

for X in [X1, X2]:
    vector = ot.CompositeRandomVector(myFunction, X)
    event = ot.ThresholdEvent(vector, ot.GreaterOrEqual(), 0.0)

    print("X:", X.getDistribution())

    myAlgo3 = ot.DirectionalSampling(event)
    n1 = myFunction.getEvaluationCallsNumber()
    myAlgo3.run()
    n2 = myFunction.getEvaluationCallsNumber()
    result = myAlgo3.getResult().getProbabilityEstimate()
    print("p=%.6g (ncalls = %d)" % (result, n2 - n1))