File: t_Dirichlet_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (159 lines) | stat: -rwxr-xr-x 6,167 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()

# Instantiate one distribution object
for dim in range(1, 2):
    theta = ot.Point(dim + 1)
    for i in range(dim + 1):
        theta[i] = (i + 1.0) / 4.0
    distribution = ot.Dirichlet(theta)
    description = [""] * dim
    for j in range(1, dim + 1):
        oss = "Marginal " + str(j)
        description[j - 1] = oss
    distribution.setDescription(description)
    print("Distribution ", repr(distribution))
    print("Distribution ", distribution)

    # Is this distribution elliptical ?
    print("Elliptical = ", distribution.isElliptical())

    # Is this distribution continuous ?
    print("Continuous = ", distribution.isContinuous())

    # Test for realization of distribution
    oneRealization = distribution.getRealization()
    print("oneRealization=", repr(oneRealization))

    # Define a point
    point = ot.Point(distribution.getDimension(), 0.5 / distribution.getDimension())
    print("Point= ", repr(point))

    # Show PDF and CDF of point
    LPDF = distribution.computeLogPDF(point)
    print("log pdf= %.8g" % LPDF)
    PDF = distribution.computePDF(point)
    print("pdf     = %.8g" % PDF)
    CDF = distribution.computeCDF(point)
    print("cdf= %.8g" % CDF)
    quantile = distribution.computeQuantile(0.95)
    print("quantile=", repr(quantile))
    print("cdf(quantile)= %.6f" % distribution.computeCDF(quantile))
    # Get 95% survival function
    inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
    print("InverseSurvival=", repr(inverseSurvival))
    print(
        "Survival(inverseSurvival)=%.6f"
        % distribution.computeSurvivalFunction(inverseSurvival)
    )
    print("entropy=%.6f" % distribution.computeEntropy())

    # Confidence regions
    (
        interval,
        threshold,
    ) = distribution.computeMinimumVolumeIntervalWithMarginalProbability(0.95)
    print("Minimum volume interval=", interval)
    print("threshold=", ot.Point(1, threshold))
    levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
    print("Minimum volume level set=", levelSet)
    print("beta=", ot.Point(1, beta))
    (
        interval,
        beta,
    ) = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(0.95)
    print("Bilateral confidence interval=", interval)
    print("beta=", ot.Point(1, beta))
    (
        interval,
        beta,
    ) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
        0.95, False
    )
    print("Unilateral confidence interval (lower tail)=", interval)
    print("beta=", ot.Point(1, beta))
    (
        interval,
        beta,
    ) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
        0.95, True
    )
    print("Unilateral confidence interval (upper tail)=", interval)
    print("beta=", ot.Point(1, beta))

    mean = distribution.getMean()
    print("mean=", repr(mean))
    standardDeviation = distribution.getStandardDeviation()
    print("standard deviation=", repr(standardDeviation))
    skewness = distribution.getSkewness()
    print("skewness=", repr(skewness))
    kurtosis = distribution.getKurtosis()
    print("kurtosis=", repr(kurtosis))
    covariance = distribution.getCovariance()
    print("covariance=", repr(covariance))

    x = 0.6
    y = [0.2] * (dim - 1)
    print("conditional PDF=%.6f" % distribution.computeConditionalPDF(x, y))
    print("conditional CDF=%.6f" % distribution.computeConditionalCDF(x, y))
    print("conditional quantile=%.6f" % distribution.computeConditionalQuantile(x, y))
    pt = ot.Point([0.1 * i + 0.15 for i in range(dim)])
    print(
        "sequential conditional PDF=",
        distribution.computeSequentialConditionalPDF(point),
    )
    resCDF = distribution.computeSequentialConditionalCDF(pt)
    print("sequential conditional CDF(", pt, ")=", resCDF)
    print(
        "sequential conditional quantile(",
        resCDF,
        ")=",
        distribution.computeSequentialConditionalQuantile(resCDF),
    )

    # Ticket #2306
    if dim == 2:
        condPDF = distribution.computeConditionalPDF(-0.1, [0.5])
        assert ot.SpecFunc.IsNormal(condPDF), "condPDF is not normal"
        condPDF = distribution.computeConditionalPDF(0.5, [0.5])
        assert ot.SpecFunc.IsNormal(condPDF), "condPDF is not normal"
        condPDF = distribution.computeConditionalPDF(0.6, [0.5])
        assert ot.SpecFunc.IsNormal(condPDF), "condPDF is not normal"
        condPDF = distribution.computeSequentialConditionalPDF([0.5, -0.1])
        assert ot.SpecFunc.IsNormal(condPDF), "condPDF is not normal"
        condPDF = distribution.computeSequentialConditionalPDF([0.5, 0.5])
        assert ot.SpecFunc.IsNormal(condPDF), "condPDF is not normal"
        condPDF = distribution.computeSequentialConditionalPDF([0.5, 0.6])
        assert ot.SpecFunc.IsNormal(condPDF), "condPDF is not normal"

    # Extract the marginals
    for i in range(dim):
        margin = distribution.getMarginal(i)
        print("margin=", margin)
        print("margin PDF= %.8g" % margin.computePDF(ot.Point(1, 0.5)))
        print("margin CDF= %.8g" % margin.computeCDF(ot.Point(1, 0.5)))
        print("margin quantile=", repr(margin.computeQuantile(0.95)))
        print("margin realization=", repr(margin.getRealization()))
    if dim >= 2:
        # Extract a 2-D marginal
        indices = [1, 0]
        print("indices=", indices)
        margins = distribution.getMarginal(indices)
        print("margins=", margins)
        print("margins PDF=", margins.computePDF(ot.Point(2, 0.5)))
        print("margins CDF= %.8g" % margins.computeCDF(ot.Point(2, 0.5)))
        quantile = margins.computeQuantile(0.95)
        print("margins quantile=", repr(quantile))
        print("margins CDF(quantile)= %.6f" % margins.computeCDF(quantile))
        print("margins realization=", repr(margins.getRealization()))

    ot.Log.Show(ot.Log.TRACE)
    validation = ott.DistributionValidation(distribution)
    validation.skipCDF()
    validation.skipGradient()
    validation.skipMoments()
    validation.run()