1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
# Instantiate one distribution object
for dim in range(1, 2):
theta = ot.Point(dim + 1)
for i in range(dim + 1):
theta[i] = (i + 1.0) / 4.0
distribution = ot.Dirichlet(theta)
description = [""] * dim
for j in range(1, dim + 1):
oss = "Marginal " + str(j)
description[j - 1] = oss
distribution.setDescription(description)
print("Distribution ", repr(distribution))
print("Distribution ", distribution)
# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())
# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", repr(oneRealization))
# Define a point
point = ot.Point(distribution.getDimension(), 0.5 / distribution.getDimension())
print("Point= ", repr(point))
# Show PDF and CDF of point
LPDF = distribution.computeLogPDF(point)
print("log pdf= %.8g" % LPDF)
PDF = distribution.computePDF(point)
print("pdf = %.8g" % PDF)
CDF = distribution.computeCDF(point)
print("cdf= %.8g" % CDF)
quantile = distribution.computeQuantile(0.95)
print("quantile=", repr(quantile))
print("cdf(quantile)= %.6f" % distribution.computeCDF(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(distribution.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
"Survival(inverseSurvival)=%.6f"
% distribution.computeSurvivalFunction(inverseSurvival)
)
print("entropy=%.6f" % distribution.computeEntropy())
# Confidence regions
(
interval,
threshold,
) = distribution.computeMinimumVolumeIntervalWithMarginalProbability(0.95)
print("Minimum volume interval=", interval)
print("threshold=", ot.Point(1, threshold))
levelSet, beta = distribution.computeMinimumVolumeLevelSetWithThreshold(0.95)
print("Minimum volume level set=", levelSet)
print("beta=", ot.Point(1, beta))
(
interval,
beta,
) = distribution.computeBilateralConfidenceIntervalWithMarginalProbability(0.95)
print("Bilateral confidence interval=", interval)
print("beta=", ot.Point(1, beta))
(
interval,
beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
0.95, False
)
print("Unilateral confidence interval (lower tail)=", interval)
print("beta=", ot.Point(1, beta))
(
interval,
beta,
) = distribution.computeUnilateralConfidenceIntervalWithMarginalProbability(
0.95, True
)
print("Unilateral confidence interval (upper tail)=", interval)
print("beta=", ot.Point(1, beta))
mean = distribution.getMean()
print("mean=", repr(mean))
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", repr(standardDeviation))
skewness = distribution.getSkewness()
print("skewness=", repr(skewness))
kurtosis = distribution.getKurtosis()
print("kurtosis=", repr(kurtosis))
covariance = distribution.getCovariance()
print("covariance=", repr(covariance))
x = 0.6
y = [0.2] * (dim - 1)
print("conditional PDF=%.6f" % distribution.computeConditionalPDF(x, y))
print("conditional CDF=%.6f" % distribution.computeConditionalCDF(x, y))
print("conditional quantile=%.6f" % distribution.computeConditionalQuantile(x, y))
pt = ot.Point([0.1 * i + 0.15 for i in range(dim)])
print(
"sequential conditional PDF=",
distribution.computeSequentialConditionalPDF(point),
)
resCDF = distribution.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
"sequential conditional quantile(",
resCDF,
")=",
distribution.computeSequentialConditionalQuantile(resCDF),
)
# Ticket #2306
if dim == 2:
condPDF = distribution.computeConditionalPDF(-0.1, [0.5])
assert ot.SpecFunc.IsNormal(condPDF), "condPDF is not normal"
condPDF = distribution.computeConditionalPDF(0.5, [0.5])
assert ot.SpecFunc.IsNormal(condPDF), "condPDF is not normal"
condPDF = distribution.computeConditionalPDF(0.6, [0.5])
assert ot.SpecFunc.IsNormal(condPDF), "condPDF is not normal"
condPDF = distribution.computeSequentialConditionalPDF([0.5, -0.1])
assert ot.SpecFunc.IsNormal(condPDF), "condPDF is not normal"
condPDF = distribution.computeSequentialConditionalPDF([0.5, 0.5])
assert ot.SpecFunc.IsNormal(condPDF), "condPDF is not normal"
condPDF = distribution.computeSequentialConditionalPDF([0.5, 0.6])
assert ot.SpecFunc.IsNormal(condPDF), "condPDF is not normal"
# Extract the marginals
for i in range(dim):
margin = distribution.getMarginal(i)
print("margin=", margin)
print("margin PDF= %.8g" % margin.computePDF(ot.Point(1, 0.5)))
print("margin CDF= %.8g" % margin.computeCDF(ot.Point(1, 0.5)))
print("margin quantile=", repr(margin.computeQuantile(0.95)))
print("margin realization=", repr(margin.getRealization()))
if dim >= 2:
# Extract a 2-D marginal
indices = [1, 0]
print("indices=", indices)
margins = distribution.getMarginal(indices)
print("margins=", margins)
print("margins PDF=", margins.computePDF(ot.Point(2, 0.5)))
print("margins CDF= %.8g" % margins.computeCDF(ot.Point(2, 0.5)))
quantile = margins.computeQuantile(0.95)
print("margins quantile=", repr(quantile))
print("margins CDF(quantile)= %.6f" % margins.computeCDF(quantile))
print("margins realization=", repr(margins.getRealization()))
ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(distribution)
validation.skipCDF()
validation.skipGradient()
validation.skipMoments()
validation.run()
|