File: t_Distribution_arithmetic.expout

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (58 lines) | stat: -rw-r--r-- 4,492 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
dist1: Normal(mu = 1, sigma = 0.5)
dist1+2: Normal(mu = 3, sigma = 0.5)
dist1-2: Normal(mu = -1, sigma = 0.5)
dist1*2: Normal(mu = 2, sigma = 1)
dist1/2: Normal(mu = 0.5, sigma = 0.25)
2/dist1: RandomMixture(2 * CompositeDistribution=f(Normal(mu = 1, sigma = 0.5)) with f=[x]->[1.0 / x])
cos(dist1): CompositeDistribution=f(Normal(mu = 1, sigma = 0.5)) with f=[x]->[cos(x)]
sin(dist1): CompositeDistribution=f(Normal(mu = 1, sigma = 0.5)) with f=[x]->[sin(x)]
tan(dist1): CompositeDistribution=f(Normal(mu = 1, sigma = 0.5)) with f=[x]->[tan(x)]
acos(dist0): CompositeDistribution=f(Uniform(a = -0.999, b = 0.999)) with f=[x]->[acos(x)]
asin(dist0): CompositeDistribution=f(Uniform(a = -0.999, b = 0.999)) with f=[x]->[asin(x)]
atan(dist0): CompositeDistribution=f(Uniform(a = -0.999, b = 0.999)) with f=[x]->[atan(x)]
cosh(dist1): CompositeDistribution=f(Normal(mu = 1, sigma = 0.5)) with f=[x]->[cosh(x)]
sinh(dist1): CompositeDistribution=f(Normal(mu = 1, sigma = 0.5)) with f=[x]->[sinh(x)]
tanh(dist1): CompositeDistribution=f(Normal(mu = 1, sigma = 0.5)) with f=[x]->[tanh(x)]
acosh(distG1): CompositeDistribution=f(LogNormal(muLog = 1, sigmaLog = 1, gamma = 1)) with f=[x]->[acosh(x)]
asinh(dist1): CompositeDistribution=f(Normal(mu = 1, sigma = 0.5)) with f=[x]->[asinh(x)]
atanh(dist0): CompositeDistribution=f(Uniform(a = -0.999, b = 0.999)) with f=[x]->[atanh(x)]
exp(dist1): LogNormal(muLog = 1, sigmaLog = 0.5, gamma = 0)
log(distG1): CompositeDistribution=f(LogNormal(muLog = 1, sigmaLog = 1, gamma = 1)) with f=[x]->[log(x)]
ln(distG1): CompositeDistribution=f(LogNormal(muLog = 1, sigmaLog = 1, gamma = 1)) with f=[x]->[log(x)]
dist1^3: CompositeDistribution=f(Normal(mu = 1, sigma = 0.5)) with f=[x]->[x^3]
dist1^2.5: CompositeDistribution=f(LogNormal(muLog = 1, sigmaLog = 1, gamma = 1)) with f=[x]->[x^2.5]
inverse(distG1): CompositeDistribution=f(LogNormal(muLog = 1, sigmaLog = 1, gamma = 1)) with f=[x]->[1.0 / x]
sqr(dist1): SquaredNormal(mu = 1, sigma = 0.5)
sqrt(distG1): CompositeDistribution=f(LogNormal(muLog = 1, sigmaLog = 1, gamma = 1)) with f=[x]->[sqrt(x)]
cbrt(dist1): CompositeDistribution=f(Normal(mu = 1, sigma = 0.5)) with f=[x]->[cbrt(x)]
abs(dist1): CompositeDistribution=f(Normal(mu = 1, sigma = 0.5)) with f=[x]->[abs(x)]
dist1+dist2: Normal(mu = -1, sigma = 1.11803)
dist1-dist2: Normal(mu = 3, sigma = 1.11803)
dist1*dist2: ProductDistribution(Normal(mu = 1, sigma = 0.5) * Normal(mu = -2, sigma = 1))
dist1/dist2: ProductDistribution(Normal(mu = 1, sigma = 0.5) * CompositeDistribution=f(Normal(mu = -2, sigma = 1)) with f=[x]->[1.0 / x])
3/dist1^2: RandomMixture(3 * CompositeDistribution=f(SquaredNormal(mu = 1, sigma = 0.5)) with f=[x]->[1.0 / x])
(3/dist1)^2: CompositeDistribution=f(RandomMixture(3 * CompositeDistribution=f(Normal(mu = 1, sigma = 0.5)) with f=[x]->[1.0 / x])) with f=[x]->[x^2]
logn*logn: LogNormal(muLog = 0, sigmaLog = 1.41421, gamma = 0)
logu*logu: CompositeDistribution=f(Triangular(a = -2, m = 0, b = 2)) with f=[x]->[exp(x)]
logu*logn: CompositeDistribution=f(SmoothedUniform(a = -1, b = 1, sigma = 1)) with f=[x]->[exp(x)]
logn*logu: CompositeDistribution=f(SmoothedUniform(a = -1, b = 1, sigma = 1)) with f=[x]->[exp(x)]
WeibullMin+Exponential: RandomMixture(WeibullMin(beta = 1, alpha = 1, gamma = 0) + Exponential(lambda = 1, gamma = 0))
result.CDF(1.0)=0.264241
-WeibullMin+Exponential: RandomMixture(-WeibullMin(beta = 1, alpha = 1, gamma = 0) + Exponential(lambda = 1, gamma = 0))
result.CDF(1.0)=0.816060
WeibullMin-Exponential: RandomMixture(WeibullMin(beta = 1, alpha = 1, gamma = 0) - Exponential(lambda = 1, gamma = 0))
result.CDF(1.0)=0.816060
-WeibullMin-Exponential: RandomMixture(-WeibullMin(beta = 1, alpha = 1, gamma = 0) - Exponential(lambda = 1, gamma = 0))
result.CDF(-1.0)=0.735759
JointDistribution(Normal(mu = 0, sigma = 1.41421), Normal(mu = 0, sigma = 1.41421), IndependentCopula(dimension = 2))
JointDistribution(Normal(mu = 3, sigma = 1), Normal(mu = 3, sigma = 1), NormalCopula(R = [[ 1 0 ]
 [ 0 1 ]]))
JointDistribution(Normal(mu = 0, sigma = 1.41421), Normal(mu = 0, sigma = 1.41421), IndependentCopula(dimension = 2))
JointDistribution(Normal(mu = -3, sigma = 1), Normal(mu = -3, sigma = 1), NormalCopula(R = [[ 1 0 ]
 [ 0 1 ]]))
Normal(mu = -7, sigma = 2)
Normal(mu = -7, sigma = 2)
RandomMixture(-Gamma(k = 2, lambda = 1, gamma = 0))
RandomMixture(-Gamma(k = 2, lambda = 0.5, gamma = 0))
RandomMixture(1 - Gamma(k = 2, lambda = 0.5, gamma = 0))
RandomMixture(1 + Poisson(lambda = 5))