File: t_Distribution_python.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (282 lines) | stat: -rwxr-xr-x 7,634 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott
import math as m


class UniformNdPy(ot.PythonDistribution):
    def __init__(self, a=[0.0], b=[1.0]):
        super(UniformNdPy, self).__init__(len(a))
        if len(a) != len(b):
            raise ValueError("Invalid bounds")
        for i in range(len(a)):
            if a[i] > b[i]:
                raise ValueError("Invalid bounds")
        self.a = a
        self.b = b
        self.factor = 1.0
        for i in range(len(a)):
            self.factor *= b[i] - a[i]

    def getRange(self):
        return ot.Interval(self.a, self.b, [True] * len(self.a), [True] * len(self.a))

    def getRealization(self):
        X = []
        for i in range(len(self.a)):
            X.append(
                self.a[i] + (self.b[i] - self.a[i]) * ot.RandomGenerator.Generate()
            )
        return X

    def getSample(self, size):
        X = []
        for i in range(size):
            X.append(self.getRealization())
        return X

    def computeCDF(self, X):
        prod = 1.0
        for i in range(len(self.a)):
            if X[i] < self.a[i]:
                return 0.0
            prod *= min(self.b[i], X[i]) - self.a[i]
        return prod / self.factor

    def computePDF(self, X):
        for i in range(len(self.a)):
            if X[i] < self.a[i]:
                return 0.0
            if X[i] > self.b[i]:
                return 0.0
        return 1.0 / self.factor

    def getRoughness(self):
        return 42.0

    def getMean(self):
        mu = []
        for i in range(len(self.a)):
            mu.append(0.5 * (self.a[i] + self.b[i]))
        return mu

    def getStandardDeviation(self):
        stdev = []
        for i in range(len(self.a)):
            stdev.append((self.b[i] - self.a[i]) / m.sqrt(12.0))
        return stdev

    def getSkewness(self):
        return [0.0] * len(self.a)

    def getKurtosis(self):
        return [1.8] * len(self.a)

    def getMoment(self, n):
        return [-0.1 * n] * len(self.a)

    # def getCentralMoment(self, n):
    #     return [0.0] * len(self.a)

    def computeCharacteristicFunction(self, x):
        if len(self.a) > 1:
            raise ValueError("dim>1")
        ax = self.a[0] * x
        bx = self.b[0] * x
        return (m.sin(bx) - m.sin(ax) + 1j * (m.cos(ax) - m.cos(bx))) / (bx - ax)

    def isElliptical(self):
        return (len(self.a) == 1) and (self.a[0] == -self.b[0])

    def isCopula(self):
        for i in range(len(self.a)):
            if self.a[i] != 0.0:
                return False
            if self.b[i] != 1.0:
                return False
        return True

    def getMarginal(self, indices):
        subA = []
        subB = []
        for i in indices:
            subA.append(self.a[i])
            subB.append(self.b[i])
        py_dist = UniformNdPy(subA, subB)
        return ot.Distribution(py_dist)

    def computeQuantile(self, prob, tail=False):
        p = 1.0 - prob if tail else prob
        quantile = list(self.a)
        for i in range(len(self.a)):
            quantile[i] += p * (self.b[i] - self.a[i])
        return quantile

    def getParameter(self):
        return list(self.a) + list(self.b)

    def getParameterDescription(self):
        paramDesc = ["a_" + str(i) for i in range(len(self.a))]
        paramDesc.extend(["b_" + str(i) for i in range(len(self.a))])
        return paramDesc

    def setParameter(self, parameter):
        dim = len(self.a)
        for i in range(dim):
            self.a[i] = parameter[i]
            self.b[i] = parameter[dim + i]


for pyDist in [UniformNdPy(), UniformNdPy([0.0] * 2, [1.0] * 2)]:
    print("pyDist=", pyDist)

    # Instance creation
    myDist = ot.Distribution(pyDist)
    print("myDist=", repr(myDist))

    # Copy constructor
    newRV = ot.Distribution(myDist)

    # Dimension
    dim = myDist.getDimension()
    print("dimension=", dim)

    # Realization
    X = myDist.getRealization()
    print("realization=", X)

    # Sample
    X = myDist.getSample(5)
    print("sample=", X)

    # PDF
    point = [0.2] * dim
    pdf = myDist.computePDF(point)
    print("pdf=", pdf)

    # CDF
    cdf = myDist.computeCDF(point)
    print("cdf= %.12g" % cdf)

    # roughness
    roughness = myDist.getRoughness()
    print("roughness=", roughness)

    # Mean
    mean = myDist.getMean()
    print("mean=", mean)

    # Standard deviation
    standardDeviation = myDist.getStandardDeviation()
    print("standard deviation=", standardDeviation)

    # Skewness
    skewness = myDist.getSkewness()
    print("skewness=", skewness)

    # Kurtosis
    kurtosis = myDist.getKurtosis()
    print("kurtosis=", kurtosis)

    # Moment
    moment = myDist.getMoment(3)
    print("moment=", moment)

    # Centered moment
    centeredMoment = myDist.getCentralMoment(3)
    print("centered moment=", centeredMoment)

    if dim == 1:
        CF = myDist.computeCharacteristicFunction(point[0])
        print("characteristic function= (%.12g%+.12gj)" % (CF.real, CF.imag))

    isElliptical = myDist.isElliptical()
    print("isElliptical=", isElliptical)

    isCopula = myDist.isCopula()
    print("isCopula=", isCopula)

    # Range
    range_ = myDist.getRange()
    print("range=", range_)

    # marginal
    marginal = myDist.getMarginal(0)
    print("marginal=", marginal)

    # quantile
    quantile = myDist.computeQuantile(0.5)
    print("quantile=", quantile)

    ot.Log.Show(ot.Log.TRACE)
    validation = ott.DistributionValidation(myDist)
    validation.skipEntropy()  # slow
    validation.skipMinimumVolumeLevelSet()  # slow
    validation.skipCharacteristicFunction()  # undefined
    validation.run()

    param = myDist.getParameter()
    print("parameter=", param)
    param[0] = 0.4
    myDist.setParameter(param)
    print("parameter=", myDist.getParameter())
    print("parameterDesc=", myDist.getParameterDescription())

    print("Cloning distribution")
    newDist = ot.Distribution(myDist)
    param[0] = 0.5
    newDist.setParameter(param)
    print("dist parameter=", myDist.getParameter())
    print("copy dist parameter=", newDist.getParameter())

# Use the distribution as a copula
myDist = ot.Distribution(UniformNdPy([0.0] * 2, [1.0] * 2))
print(ot.JointDistribution([ot.Normal(), ot.Normal()], myDist))
try:
    print("try with another Python distribution")
    myDist = ot.Distribution(UniformNdPy([0.0] * 2, [2.0] * 2))
    print(ot.JointDistribution([ot.Normal(), ot.Normal()], myDist))
except Exception:
    print("The construction failed on purpose as", myDist, "is not a copula")

# Extract the copula
myDist = ot.Distribution(UniformNdPy([0.0] * 2, [2.0] * 2))
copula = myDist.getCopula()

# Test computePDF over a sample (ticket #899)
res = copula.computePDF([[0.5] * 2] * 10)

# Test a discrete distribution


class PoissonPy(ot.PythonDistribution):
    def __init__(self, lamb):
        super(PoissonPy, self).__init__(1)
        if lamb <= 0.0:
            raise ValueError("Expected a positive lambda")
        self.poisson_ = ot.Poisson(lamb)

    def getRange(self):
        return self.poisson_.getRange()

    def computeCDF(self, X):
        return self.poisson_.computeCDF(X)

    def computePDF(self, X):
        return self.poisson_.computeCDF(X)

    def isDiscrete(self):
        return True

    def getSupport(self, interval):
        return self.poisson_.getSupport(interval)

    def isIntegral(self):
        return True


dist = ot.Distribution(PoissonPy(2.5))
print("Is discrete?", dist.isDiscrete())
print("Is integral?", dist.isIntegral())
print("pdf graph=", dist.drawPDF())