1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
#! /usr/bin/env python
import openturns as ot
import math as m
import os
class UniformNdPy(ot.PythonDistribution):
def __init__(self, a=[0.0], b=[1.0]):
super(UniformNdPy, self).__init__(len(a))
if len(a) != len(b):
raise ValueError("Invalid bounds")
for i in range(len(a)):
if a[i] > b[i]:
raise ValueError("Invalid bounds")
self.a = a
self.b = b
self.factor = 1.0
for i in range(len(a)):
self.factor *= b[i] - a[i]
def getRange(self):
return ot.Interval(self.a, self.b, [True] * len(self.a), [True] * len(self.a))
def getRealization(self):
X = []
for i in range(len(self.a)):
X.append(
self.a[i] + (self.b[i] - self.a[i]) * ot.RandomGenerator.Generate()
)
return X
def getSample(self, size):
X = []
for i in range(size):
X.append(self.getRealization())
return X
def computeCDF(self, X):
prod = 1.0
for i in range(len(self.a)):
if X[i] < self.a[i]:
return 0.0
prod *= min(self.b[i], X[i]) - self.a[i]
return prod / self.factor
def computePDF(self, X):
for i in range(len(self.a)):
if X[i] < self.a[i]:
return 0.0
if X[i] > self.b[i]:
return 0.0
return 1.0 / self.factor
def getRoughness(self):
return 42.0
def getMean(self):
mu = []
for i in range(len(self.a)):
mu.append(0.5 * (self.a[i] + self.b[i]))
return mu
def getStandardDeviation(self):
stdev = []
for i in range(len(self.a)):
stdev.append((self.b[i] - self.a[i]) / m.sqrt(12.0))
return stdev
def getSkewness(self):
return [0.0] * len(self.a)
def getKurtosis(self):
return [1.8] * len(self.a)
def getMoment(self, n):
return [-0.1 * n] * len(self.a)
def getCentralMoment(self, n):
return [0.0] * len(self.a)
def computeCharacteristicFunction(self, x):
if len(self.a) > 1:
raise ValueError("dim>1")
ax = self.a[0] * x
bx = self.b[0] * x
return (m.sin(bx) - m.sin(ax) + 1j * (m.cos(ax) - m.cos(bx))) / (bx - ax)
def isElliptical(self):
return (len(self.a) == 1) and (self.a[0] == -self.b[0])
def isCopula(self):
for i in range(len(self.a)):
if self.a[i] != 0.0:
return False
if self.b[i] != 1.0:
return False
return True
def getMarginal(self, indices):
subA = []
subB = []
for i in indices:
subA.append(self.a[i])
subB.append(self.b[i])
py_dist = UniformNdPy(subA, subB)
return ot.Distribution(py_dist)
def computeQuantile(self, prob, tail=False):
p = 1.0 - prob if tail else prob
quantile = self.a
for i in range(len(self.a)):
quantile[i] += p * (self.b[i] - self.a[i])
return quantile
def getParameter(self):
param = list(self.a)
param.extend(self.b)
return param
def getParameterDescription(self):
paramDesc = ["a_" + str(i) for i in range(len(self.a))]
paramDesc.extend(["b_" + str(i) for i in range(len(self.a))])
return paramDesc
def setParameter(self, parameter):
dim = len(self.a)
for i in range(dim):
self.a[i] = parameter[i]
self.b[i] = parameter[dim + i]
myDist = ot.Distribution(UniformNdPy([0.0] * 2, [2.0] * 2))
st = ot.Study()
fileName = "PyDIST.xml"
st.setStorageManager(ot.XMLStorageManager(fileName))
st.add("myDist", myDist)
st.save()
print("saved dist=", myDist)
dist = ot.Distribution()
st = ot.Study()
st.setStorageManager(ot.XMLStorageManager(fileName))
st.load()
st.fillObject("myDist", dist)
print("loaded dist=", dist)
os.remove(fileName)
|