File: t_Distribution_scipy.expout

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (145 lines) | stat: -rw-r--r-- 2,832 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
distribution= class=PythonDistribution name=SciPyDistribution
continuous? True
discrete? False
integral? False
realization= [0.49816]
sample=     [ v0        ]
0 : [  2.80286  ]
1 : [  1.92798  ]
2 : [  1.39463  ]
3 : [ -0.375925 ]
4 : [ -0.376022 ]
pdf@0.1= 0.25
pdf= 0.25
cdf= 0.25
quantile= [0]
quantile (tail)= [2]
scalar quantile=0
scalar quantile (tail)=2
mean= [1]
mean(sampling)= [0.976638]
std= [1.1547]
std(sampling)= [1.15052]
skewness= [0]
skewness(sampling)= [0.0248807]
kurtosis= [1.8]
kurtosis(sampling)= [1.81085]
range= [-1, 3]
parameter= [-1,4]
parameter= [3.5,4]
parameterDesc= [parameter1,parameter2]
distribution= class=PythonDistribution name=SciPyDistribution
continuous? True
discrete? False
integral? False
realization= [-1.65058]
sample=     [ v0        ]
0 : [ -0.409878 ]
1 : [ -0.967614 ]
2 : [ -1.20987  ]
3 : [ -2.3312   ]
4 : [ -2.33131  ]
pdf@0.1= 0.0190201
pdf= 0.034761
cdf= 0.994614
quantile= [-7.89492e-16]
quantile (tail)= [-4.77177]
scalar quantile=-7.89492e-16
scalar quantile (tail)=-4.77177
mean= [-1.53652]
mean(sampling)= [-1.55154]
std= [0.870537]
std(sampling)= [0.872936]
skewness= [-1.25403]
skewness(sampling)= [-1.36635]
kurtosis= [6.29126]
kurtosis(sampling)= [7.62074]
range= ]-inf (-46.5418), (4.77335) +inf[
parameter= [2.55,2.25]
parameter= [3.5,2.25]
parameterDesc= [parameter1,parameter2]
distribution= class=PythonDistribution name=SciPyDistribution
continuous? False
discrete? True
integral? True
realization= [4]
sample=     [ v0 ]
0 : [ 8  ]
1 : [ 6  ]
2 : [ 5  ]
3 : [ 3  ]
4 : [ 3  ]
pdf@0.1= 0
pdf= 0.000976562
cdf= 0.000976562
quantile= [0]
quantile (tail)= [9]
scalar quantile=0
scalar quantile (tail)=9
mean= [5]
mean(sampling)= [4.9684]
std= [1.58114]
std(sampling)= [1.57081]
skewness= [0]
skewness(sampling)= [-0.00105239]
kurtosis= [2.8]
kurtosis(sampling)= [2.8062]
range= [0, 10]
support=  0 : [  0 ]
 1 : [  1 ]
 2 : [  2 ]
 3 : [  3 ]
 4 : [  4 ]
 5 : [  5 ]
 6 : [  6 ]
 7 : [  7 ]
 8 : [  8 ]
 9 : [  9 ]
10 : [ 10 ]
parameter= [10,0.5]
parameter= [3.5,0.5]
parameterDesc= [parameter1,parameter2]
distribution= class=PythonDistribution name=SciPyDistribution
continuous? False
discrete? True
integral? True
realization= [0]
sample=     [ v0 ]
0 : [ 2  ]
1 : [ 0  ]
2 : [ 0  ]
3 : [ 0  ]
4 : [ 1  ]
pdf@0.1= 0
pdf= 0.548812
cdf= 0.548812
quantile= [0]
quantile (tail)= [0]
scalar quantile=0
scalar quantile (tail)=0
mean= [0.6]
mean(sampling)= [0.5893]
std= [0.774597]
std(sampling)= [0.765169]
skewness= [1.29099]
skewness(sampling)= [1.29299]
kurtosis= [4.66667]
kurtosis(sampling)= [4.62228]
range= [0, (13) +inf[
support=  0 : [  0 ]
 1 : [  1 ]
 2 : [  2 ]
 3 : [  3 ]
 4 : [  4 ]
 5 : [  5 ]
 6 : [  6 ]
 7 : [  7 ]
 8 : [  8 ]
 9 : [  9 ]
10 : [ 10 ]
11 : [ 11 ]
12 : [ 12 ]
13 : [ 13 ]
parameter= [0.6]
parameter= [3.5]
parameterDesc= [parameter1]