1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
|
#! /usr/bin/env python
import openturns as ot
ot.PlatformInfo.SetNumericalPrecision(6)
dim = 2
# First domain: [0,2]x[0,2]
cube = ot.Interval([0.0] * dim, [2.0] * dim)
# Second domain: sphere center=(0,0) r=1
function = ot.SymbolicFunction(["x", "y"], ["x^2 + y^2"])
sphere = ot.LevelSet(function, ot.LessOrEqual(), 1.0)
# Inside sphere but not cube
p0 = [-0.25, 0.25]
# Inside cube and sphere
p1 = [0.25, 0.25]
# Inside cube but not sphere
p2 = [1.8, 1.8]
# Outside
p3 = [4.0, 4.0]
domain = ot.DomainUnion([cube, sphere])
print("cube=", cube)
print("sphere=", sphere)
print("union=", domain)
# Accessors
print("Dimension=", domain.getDimension())
# Contains
print("is point ", p0, " inside ? ", domain.contains(p0))
print("is point ", p1, " inside ? ", domain.contains(p1))
print("is point ", p2, " inside ? ", domain.contains(p2))
print("is point ", p3, " inside ? ", domain.contains(p3))
sample = [p0, p1, p2, p3]
print("is sample ", sample, " inside ? ", domain.contains(sample))
# p1 is inside cube, no need to check sphere2
sphere2 = ot.LevelSet(ot.SymbolicFunction(["x", "y"], ["x/0"]), ot.LessOrEqual(), 1.0)
domain2 = ot.DomainUnion([cube, sphere2])
assert domain2.contains(p1), "prune sphere"
|