File: t_DualLinearCombinationFunction_std.expout

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (46 lines) | stat: -rw-r--r-- 2,278 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
myFunction= [1.5,2.5,-0.5] * ([x1,x2,x3]->[x1^3 * sin(x2 + 2.5 * x3) - (x1 + x2)^2 / (1.0 + x3^2)]) + [-3.5,0.5,-1.5] * ([x1,x2,x3]->[exp(-x1 * x2 + x3) / cos(1.0 + x2 * x3 - x1)])
Value at  [1.2,2.3,3.4] = [-32.6345,-2.5861,-10.9343]
Gradient at  [1.2,2.3,3.4] = [[  178.768   -38.5532   82.095  ]
 [ -375.374    51.2006 -159.854  ]
 [ -305.359    42.7773 -130.512  ]]
Hessian at  [1.2,2.3,3.4] = sheet #0
[[  -1751.3    4267.4    3202.7  ]
 [   4267.4  -11041     -8261.4  ]
 [   3202.7   -8261.4   -6049.1  ]]
sheet #1
[[    230.59   -612.35   -462.4  ]
 [   -612.35   1581.5    1192.5  ]
 [   -462.4    1192.5     891.78 ]]
sheet #2
[[   -742.32   1830      1374.6  ]
 [   1830     -4733.6   -3545.8  ]
 [   1374.6   -3545.8   -2604.1  ]]
Marginal  0 = (1.5 * ([x1,x2,x3]->[x1^3 * sin(x2 + 2.5 * x3) - (x1 + x2)^2 / (1.0 + x3^2)]) - 3.5 * ([x1,x2,x3]->[exp(-x1 * x2 + x3) / cos(1.0 + x2 * x3 - x1)]))
Marginal  1 = (2.5 * ([x1,x2,x3]->[x1^3 * sin(x2 + 2.5 * x3) - (x1 + x2)^2 / (1.0 + x3^2)]) + 0.5 * ([x1,x2,x3]->[exp(-x1 * x2 + x3) / cos(1.0 + x2 * x3 - x1)]))
Marginal  2 = (-0.5 * ([x1,x2,x3]->[x1^3 * sin(x2 + 2.5 * x3) - (x1 + x2)^2 / (1.0 + x3^2)]) - 1.5 * ([x1,x2,x3]->[exp(-x1 * x2 + x3) / cos(1.0 + x2 * x3 - x1)]))
Marginal (0,1)= [1.5,2.5] * ([x1,x2,x3]->[x1^3 * sin(x2 + 2.5 * x3) - (x1 + x2)^2 / (1.0 + x3^2)]) + [-3.5,0.5] * ([x1,x2,x3]->[exp(-x1 * x2 + x3) / cos(1.0 + x2 * x3 - x1)])
Marginal (0,2)= [1.5,-0.5] * ([x1,x2,x3]->[x1^3 * sin(x2 + 2.5 * x3) - (x1 + x2)^2 / (1.0 + x3^2)]) + [-3.5,-1.5] * ([x1,x2,x3]->[exp(-x1 * x2 + x3) / cos(1.0 + x2 * x3 - x1)])
Marginal (1,2)= [2.5,-0.5] * ([x1,x2,x3]->[x1^3 * sin(x2 + 2.5 * x3) - (x1 + x2)^2 / (1.0 + x3^2)]) + [0.5,-1.5] * ([x1,x2,x3]->[exp(-x1 * x2 + x3) / cos(1.0 + x2 * x3 - x1)])
myFunction (HTML)=
DualLinearCombinationEvaluation
<ul>
  <li> Input dimension = 3  </li>
  <li> Input description = [x1,x2,x3]  </li>
  <li> Output dimension = 3  </li>
  <li> Size = 2  </li>
</ul>
<table>
  <tr>
    <th>Coefficient</th>
    <th>Function</th>
  </tr>
  <tr>
    <td>[1.5,2.5,-0.5]</td>
    <td>[x1,x2,x3]->[x1^3 * sin(x2 + 2.5 * x3) - (x1 + x2)^2 / (1.0 + x3^2)]</td>
  </tr>
  <tr>
    <td>[-3.5,0.5,-1.5]</td>
    <td>[x1,x2,x3]->[exp(-x1 * x2 + x3) / cos(1.0 + x2 * x3 - x1)]</td>
  </tr>
</table>