1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
#! /usr/bin/env python
import openturns as ot
import math as m
import openturns.testing
ot.Log.Show(ot.Log.NONE)
ot.TBB.Disable()
#
# branin
dim = 2
# model
formula = (
"((x2-(5.1/(4*pi_^2))*x1^2+5*x1/pi_-6)^2+10*(1-1/8*pi_)*cos(x1)+10-54.8104)/51.9496"
)
branin = ot.SymbolicFunction(["x1", "x2"], [formula])
transfo = ot.SymbolicFunction(["u1", "u2"], ["15*u1-5", "15*u2"])
model = ot.ComposedFunction(branin, transfo)
noiseModel = ot.SymbolicFunction(["x1", "x2"], ["0.96"]) # assume constant noise var
# problem
problem = ot.OptimizationProblem()
problem.setObjective(model)
bounds = ot.Interval([0.0] * dim, [1.0] * dim)
problem.setBounds(bounds)
# design
experiment = ot.Box([1, 1])
inputSample = experiment.generate()
outputSample = model(inputSample)
# first kriging model
covarianceModel = ot.SquaredExponential([0.3007, 0.2483], [0.981959])
basis = ot.ConstantBasisFactory(dim).build()
kriging = ot.KrigingAlgorithm(inputSample, outputSample, covarianceModel, basis)
noise = [x[0] for x in noiseModel(inputSample)]
kriging.setNoise(noise)
kriging.run()
# algo
algo = ot.EfficientGlobalOptimization(problem, kriging.getResult(), noiseModel)
algo.setMaximumCallsNumber(14)
algo.setAEITradeoff(0.66744898)
algo.run()
result = algo.getResult()
# print('1st pass result=', result)
print("iteration=", result.getIterationNumber())
assert (
result.getIterationNumber() > 3 and result.getIterationNumber() < 15
), "Too few/much iterations"
print(result.getInputSample())
print(result.getOutputSample())
# openturns.testing.assert_almost_equal(result.getOptimalPoint(), [0.5, 0.0], 1e-5, 1e-5)
# openturns.testing.assert_almost_equal(result.getOptimalValue(),
# [-0.802223], 1e-5, 1e-5)
# local refinement even though the model is noisy (we still want to check
# we're not too far from optimum)
problem.setObjective(model.getMarginal(0))
algo2 = ot.TNC(problem)
# we have to use getFinalPoints as our objective function is 2-d
algo2.setStartingPoint(result.getOptimalPoint())
algo2.run()
result = algo2.getResult()
# print(result)
# openturns.testing.assert_almost_equal(result.getOptimalPoint(), [0.542773, 0.151666], 1e-5, 1e-5)
# openturns.testing.assert_almost_equal(result.getOptimalPoint(),
# [0.123895, 0.818329], 1e-5, 1e-5)
openturns.testing.assert_almost_equal(
result.getOptimalPoint(), [0.961652, 0.165000], 1e-5, 1e-5
)
openturns.testing.assert_almost_equal(result.getOptimalValue(), [-0.979476], 1e-5, 1e-5)
#
# ackley 2-d
ot.RandomGenerator.SetSeed(0)
dim = 2
# model
def ackley(X):
a = 20.0
b = 0.2
c = 2.0 * m.pi
d = len(X)
f = (
-a * m.exp(-b * m.sqrt(sum(x**2 for x in X) / d))
- m.exp(sum(m.cos(c * x) for x in X) / d)
+ a
+ m.exp(1.0)
)
# print(X, f)
return [f]
model = ot.PythonFunction(dim, 1, ackley)
# problem
problem = ot.OptimizationProblem()
problem.setObjective(model)
bounds = ot.Interval([-15.0] * dim, [15.0] * dim)
problem.setBounds(bounds)
# design
center = [0.5] * dim
levels = [2.0, 4.0, 8.0, 14.0]
experiment = ot.Factorial(center, levels)
inputSample = experiment.generate()
outputSample = model(inputSample)
# first kriging model
covarianceModel = ot.SquaredExponential([2.50057] * dim, [0.1])
basis = ot.ConstantBasisFactory(dim).build()
kriging = ot.KrigingAlgorithm(inputSample, outputSample, covarianceModel, basis)
kriging.run()
# algo
algo = ot.EfficientGlobalOptimization(problem, kriging.getResult())
# solver = ot.NLopt('GN_ESCH')
# solver = ot.NLopt('GN_MLSL')
algo.setMaximumCallsNumber(15)
algo.setMaximumAbsoluteError(1e-10)
algo.setMaximumRelativeError(1e-10)
algo.setMaximumResidualError(1e-10)
algo.setMaximumConstraintError(1e-10)
algo.setMultiStartExperimentSize(
100
) # number of multistart candidates improvement optim
algo.setMultiStartNumber(20) # number of multistart points for improvement optim
algo.setParameterEstimationPeriod(1) # relearn kriging parameters every X iteration
algo.setCorrelationLengthFactor(1.0) # correlation length stopping criterion factor
algo.run()
result = algo.getResult()
# print('1st pass result=', result)
assert (
result.getIterationNumber() > 0 and result.getIterationNumber() < 16
), "Too few/much iterations"
print("iteration=", result.getIterationNumber())
print(result.getInputSample())
print(result.getOutputSample())
# local refinement
algo2 = ot.TNC(problem)
algo2.setStartingPoint(result.getOptimalPoint())
algo2.run()
result = algo2.getResult()
openturns.testing.assert_almost_equal(result.getOptimalPoint(), [0.0] * dim, 1e-7, 1e-5)
openturns.testing.assert_almost_equal(result.getOptimalValue(), [0.0], 1e-15, 2.4e-5)
# ei = algo.getExpectedImprovement()
# print(ei)
# Cobyla out of bound test
ot.RandomGenerator.SetSeed(0)
dim = 4
model = ot.SymbolicFunction(["x1", "x2", "x3", "x4"], ["x1*x1+x2^3*x1+x3+x4"])
model = ot.MemoizeFunction(model)
bounds = ot.Interval([-5.0] * dim, [5.0] * dim)
problem = ot.OptimizationProblem()
problem.setObjective(model)
problem.setBounds(bounds)
experiment = ot.Composite([0.0] * dim, [1.0, 2.0, 4.0])
inputSample = experiment.generate()
outputSample = model(inputSample)
covarianceModel = ot.SquaredExponential([2.0] * dim, [0.1])
basis = ot.ConstantBasisFactory(dim).build()
kriging = ot.KrigingAlgorithm(inputSample, outputSample, covarianceModel, basis)
kriging.run()
algo = ot.EfficientGlobalOptimization(problem, kriging.getResult())
algo.setMaximumCallsNumber(10)
algo.run()
result = algo.getResult()
# check maximization
problem.setMinimization(False)
algo = ot.EfficientGlobalOptimization(problem, kriging.getResult())
algo.setMaximumCallsNumber(10)
algo.run()
result = algo.getResult()
assert result.getOptimalValue()[0] >= 650.0
print("OK")
|