1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
#! /usr/bin/env python
import openturns as ot
import openturns.testing as ott
ot.TESTPREAMBLE()
ot.PlatformInfo.SetNumericalPrecision(5)
# Instantiate one distribution object
dim = 2
copula = ot.EmpiricalBernsteinCopula(ot.Normal(2).getSample(12), 3)
print("Copula ", repr(copula))
print("Copula ", copula)
print("Mean ", repr(copula.getMean()))
print("Covariance ", repr(copula.getCovariance()))
# Is this copula an elliptical distribution?
print("Elliptical distribution= ", copula.isElliptical())
# Is this copula elliptical ?
print("Elliptical copula= ", copula.hasEllipticalCopula())
# Is this copula independent ?
print("Independent copula= ", copula.hasIndependentCopula())
# Test for realization of distribution
oneRealization = copula.getRealization()
print("oneRealization=", repr(oneRealization))
# Test for sampling
size = 10
oneSample = copula.getSample(size)
print("oneSample=", repr(oneSample))
# Test for sampling
size = 10000
anotherSample = copula.getSample(size)
print("anotherSample mean=", repr(anotherSample.computeMean()))
print("anotherSample covariance=", repr(anotherSample.computeCovariance()))
# Define a point
point = [0.2] * dim
# Show PDF and CDF of point
pointPDF = copula.computePDF(point)
pointCDF = copula.computeCDF(point)
print("Point = ", repr(point), " pdf=%.6f" % pointPDF, " cdf=%.6f" % pointCDF)
# Get 50% quantile
quantile = copula.computeQuantile(0.5)
print("Quantile=", repr(quantile))
print("CDF(quantile)=%.6f" % copula.computeCDF(quantile))
# Get 5% quantile
quantile = copula.computeQuantile(0.95, True)
print("Quantile=", repr(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(copula.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
"Survival(inverseSurvival)=%.6f" % copula.computeSurvivalFunction(inverseSurvival)
)
print("entropy=%.6f" % copula.computeEntropy())
# Confidence regions
interval, threshold = copula.computeMinimumVolumeIntervalWithMarginalProbability(0.95)
print("Minimum volume interval=", interval)
print("threshold=", ot.Point(1, threshold))
levelSet, beta = copula.computeMinimumVolumeLevelSetWithThreshold(0.95)
print("Minimum volume level set=", levelSet)
print("beta=", ot.Point(1, beta))
interval, beta = copula.computeBilateralConfidenceIntervalWithMarginalProbability(0.95)
print("Bilateral confidence interval=", interval)
print("beta=", ot.Point(1, beta))
interval, beta = copula.computeUnilateralConfidenceIntervalWithMarginalProbability(
0.95, False
)
print("Unilateral confidence interval (lower tail)=", interval)
print("beta=", ot.Point(1, beta))
interval, beta = copula.computeUnilateralConfidenceIntervalWithMarginalProbability(
0.95, True
)
print("Unilateral confidence interval (upper tail)=", interval)
print("beta=", ot.Point(1, beta))
print("parameters=", copula.getParameter())
copula.setParameter(copula.getParameter())
# Extract the marginals
for i in range(dim):
margin = copula.getMarginal(i)
print("margin=", repr(margin))
print("margin PDF=%.6f" % margin.computePDF([0.25]))
print("margin CDF=%.6f" % margin.computeCDF([0.25]))
print("margin quantile=", repr(margin.computeQuantile(0.95)))
print("margin realization=", repr(margin.getRealization()))
# Extract a 2-D marginal
indices = [1, 0]
print("indices=", repr(indices))
margins = copula.getMarginal(indices)
print("margins=", repr(margins))
print("margins PDF=%.6f" % margins.computePDF([0.25] * 2))
print("margins CDF=%.6f" % margins.computeCDF([0.25] * 2))
quantile = ot.Point(margins.computeQuantile(0.95))
print("margins quantile=", repr(quantile))
print("margins CDF(qantile)=%.6f" % margins.computeCDF(quantile))
print("margins realization=", repr(margins.getRealization()))
copula6D = ot.EmpiricalBernsteinCopula(ot.Normal(6).getSample(8), 4)
print("Entropy in higher dimension=%.6f" % copula6D.computeEntropy())
dim = 6
x = 0.6
y = [0.2] * (dim - 1)
print("conditional PDF=%.6f" % copula6D.computeConditionalPDF(x, y))
print(
"conditional PDF ref=%.6f"
% (copula6D.computePDF(y + [x]) / copula6D.getMarginal(range(5)).computePDF(y))
)
print("conditional CDF=%.6f" % copula6D.computeConditionalCDF(x, y))
print("conditional quantile=%.6f" % copula6D.computeConditionalQuantile(x, y))
pt = [0.05 * (1 + i) for i in range(dim)]
print("sequential conditional PDF=", copula6D.computeSequentialConditionalPDF(pt))
resCDF = copula6D.computeSequentialConditionalCDF(pt)
print("sequential conditional CDF(", pt, ")=", resCDF)
print(
"sequential conditional quantile(",
resCDF,
")=",
copula6D.computeSequentialConditionalQuantile(resCDF),
)
ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(copula)
validation.run()
|