1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
|
#! /usr/bin/env python
import openturns as ot
ot.TESTPREAMBLE()
dim = 2
distribution = ot.Normal(dim)
#
# Case 1: composite random vector based event
#
# The input vector
X = ot.RandomVector(distribution)
# The model: the identity function
inVars = ot.Description(dim)
for i in range(dim):
inVars[i] = "x" + str(i)
model = ot.SymbolicFunction(inVars, inVars)
# The output vector
Y = ot.CompositeRandomVector(model, X)
# The domain: [0, 1]^dim
domain = ot.Interval(dim)
# The event
event = ot.DomainEvent(Y, domain)
print("sample=", event.getSample(10))
#
# Case 2: process based event
#
# The input process
X = ot.WhiteNoise(distribution)
# The domain: [0, 1]^dim
domain = ot.Interval(dim)
# The event
event = ot.ProcessEvent(X, domain)
print("sample=", event.getSample(10))
# 3. from distribution
antecedent = ot.RandomVector(ot.Normal(2))
domain = ot.LevelSet(ot.SymbolicFunction(["x", "y"], ["x^2+y^2"]), ot.Less(), 1.0)
event = ot.DomainEvent(antecedent, domain)
print("sample=", event.getSample(10))
|