File: t_Event_domain.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (46 lines) | stat: -rwxr-xr-x 1,018 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()

dim = 2
distribution = ot.Normal(dim)
#
# Case 1: composite random vector based event
#

# The input vector
X = ot.RandomVector(distribution)
# The model: the identity function
inVars = ot.Description(dim)
for i in range(dim):
    inVars[i] = "x" + str(i)
model = ot.SymbolicFunction(inVars, inVars)
# The output vector
Y = ot.CompositeRandomVector(model, X)
# The domain: [0, 1]^dim
domain = ot.Interval(dim)
# The event
event = ot.DomainEvent(Y, domain)

print("sample=", event.getSample(10))

#
# Case 2: process based event
#

# The input process
X = ot.WhiteNoise(distribution)
# The domain: [0, 1]^dim
domain = ot.Interval(dim)
# The event
event = ot.ProcessEvent(X, domain)

print("sample=", event.getSample(10))

# 3. from distribution
antecedent = ot.RandomVector(ot.Normal(2))
domain = ot.LevelSet(ot.SymbolicFunction(["x", "y"], ["x^2+y^2"]), ot.Less(), 1.0)
event = ot.DomainEvent(antecedent, domain)
print("sample=", event.getSample(10))