File: t_ExponentialModel_std.expout

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (40 lines) | stat: -rw-r--r-- 2,823 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
myDefaultModel =  ExponentialModel(scale=[1], amplitude=[1], no spatial correlation)
myModel =  ExponentialModel(scale=[1], amplitude=[2], no spatial correlation)
covariance matrix at t =  1.0  :  [[ 1.47152 ]]
covariance matrix at t =  -1.0  :  [[ 1.47152 ]]
covariance matrix at t =  15.0  :  [[ 1.22361e-06 ]]
discretized covariance over the time grid= RegularGrid(start=0, step=0.333333, n=4) is= [[ 4       2.86613 2.05367 1.47152 ]
 [ 2.86613 4       2.86613 2.05367 ]
 [ 2.05367 2.86613 4       2.86613 ]
 [ 1.47152 2.05367 2.86613 4       ]]
myHighModel =  ExponentialModel(scale=[1], amplitude=[1,2,3], spatial correlation=
[[ 1    1    0    ]
 [ 1    1    0.25 ]
 [ 0    0.25 1    ]])
covariance matrix at t =  1.0  :  [[ 0.367879 0.735759 0        ]
 [ 0.735759 1.47152  0.551819 ]
 [ 0        0.551819 3.31091  ]]
covariance matrix at t =  -1.0  :  [[ 0.367879 0.735759 0        ]
 [ 0.735759 1.47152  0.551819 ]
 [ 0        0.551819 3.31091  ]]
covariance matrix at t =  15.0  :  [[ 3.05902e-07 6.11805e-07 0           ]
 [ 6.11805e-07 1.22361e-06 4.58853e-07 ]
 [ 0           4.58853e-07 2.75312e-06 ]]
discretized covariance over the time grid= RegularGrid(start=0, step=0.333333, n=4) is= 12x12
[[ 1        2        0        0.716531 1.43306  0        0.513417 1.02683  0        0.367879 0.735759 0        ]
 [ 2        4        1.5      1.43306  2.86613  1.0748   1.02683  2.05367  0.770126 0.735759 1.47152  0.551819 ]
 [ 0        1.5      9        0        1.0748   6.44878  0        0.770126 4.62075  0        0.551819 3.31091  ]
 [ 0.716531 1.43306  0        1        2        0        0.716531 1.43306  0        0.513417 1.02683  0        ]
 [ 1.43306  2.86613  1.0748   2        4        1.5      1.43306  2.86613  1.0748   1.02683  2.05367  0.770126 ]
 [ 0        1.0748   6.44878  0        1.5      9        0        1.0748   6.44878  0        0.770126 4.62075  ]
 [ 0.513417 1.02683  0        0.716531 1.43306  0        1        2        0        0.716531 1.43306  0        ]
 [ 1.02683  2.05367  0.770126 1.43306  2.86613  1.0748   2        4        1.5      1.43306  2.86613  1.0748   ]
 [ 0        0.770126 4.62075  0        1.0748   6.44878  0        1.5      9        0        1.0748   6.44878  ]
 [ 0.367879 0.735759 0        0.513417 1.02683  0        0.716531 1.43306  0        1        2        0        ]
 [ 0.735759 1.47152  0.551819 1.02683  2.05367  0.770126 1.43306  2.86613  1.0748   2        4        1.5      ]
 [ 0        0.551819 3.31091  0        0.770126 4.62075  0        1.0748   6.44878  0        1.5      9        ]]
parameters= [1,1,2,3] [scale_0,amplitude_0,amplitude_1,amplitude_2]
marginal= ExponentialModel(scale=[1], amplitude=[1,3], no spatial correlation) marginal.parameter= [1,1e-12,1] [scale_0,nuggetFactor,amplitude_0]
[1,1,1,1e-12,2,2]
[1,1,1,1e-12,2,0.5]
ok