File: t_FORM_sensitivity.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (113 lines) | stat: -rwxr-xr-x 3,415 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#! /usr/bin/env python

import openturns as ot


def printPoint(point, digits):
    oss = "["
    eps = pow(0.1, digits)
    for i in range(point.getDimension()):
        if i == 0:
            sep = ""
        else:
            sep = ","
        if abs(point[i]) < eps:
            oss += sep + "%.6f" % abs(point[i])
        else:
            oss += sep + "%.6f" % point[i]
        sep = ","
    oss += "]"
    return oss


ot.TESTPREAMBLE()


# We create a numerical math function
# Analytical construction
inputFunc = ot.Description(2)
inputFunc[0] = "x0"
inputFunc[1] = "x1"
formulas = ot.Description(1)
formulas[0] = "-(6+x0^2-x1)"
print("formulas=", formulas)
myFunction = ot.SymbolicFunction(inputFunc, formulas)

dim = myFunction.getInputDimension()
# We create a normal distribution point of dimension 1
mean = ot.Point(dim, 0.0)
# x0
mean[0] = 5.0
# x1
mean[1] = 2.1
sigma = ot.Point(dim, 0.0)
# x0
sigma[0] = 3.3
# x1
sigma[1] = 3.0
R = ot.IdentityMatrix(dim)

#
testDistributions = ot.DistributionCollection(2)
testDistributions[0] = ot.Normal(mean, sigma, R)
marginals = ot.DistributionCollection(2)
marginals[0] = testDistributions[0].getMarginal(0)
marginals[1] = testDistributions[0].getMarginal(1)
testDistributions[1] = ot.JointDistribution(marginals, ot.NormalCopula(R))
for i in range(1):
    myDistribution = testDistributions[i]
    # We name the components of the distribution
    componentDescription = ot.Description(dim)
    componentDescription[0] = "Marginal 1"
    componentDescription[1] = "Marginal 2"
    myDistribution.setDescription(componentDescription)

    # We create a 'usual' RandomVector from the Distribution
    vect = ot.RandomVector(myDistribution)

    # We create a composite random vector
    output = ot.CompositeRandomVector(myFunction, vect)
    outputDescription = ot.Description(1)
    outputDescription[0] = "Interest Variable 1"
    output.setDescription(outputDescription)

    # We create an Event from this RandomVector
    myEvent = ot.ThresholdEvent(output, ot.Greater(), 0.0)

    # We create a NearestPoint algorithm
    myCobyla = ot.Cobyla()
    myCobyla.setMaximumCallsNumber(200)
    myCobyla.setMaximumAbsoluteError(1.0e-10)
    myCobyla.setMaximumRelativeError(1.0e-10)
    myCobyla.setMaximumResidualError(1.0e-10)
    myCobyla.setMaximumConstraintError(1.0e-10)
    print("myCobyla=", myCobyla)

    # We create a FORM algorithm
    # The first parameter is an OptimizationAlgorithm
    # The second parameter is an event
    # The third parameter is a starting point for the design point research
    myAlgo = ot.FORM(myCobyla, myEvent, mean)

    print("FORM=", myAlgo)

    # Perform the simulation
    myAlgo.run()

    # Stream out the result
    result = ot.FORMResult(myAlgo.getResult())
    digits = 5
    print("importance factors=", printPoint(result.getImportanceFactors(), digits))
    print("Hasofer reliability index=%.6f" % result.getHasoferReliabilityIndex())
    print("result=", result)

    # Hasofer Reliability Index Sensitivity
    hasoferReliabilityIndexSensitivity = result.getHasoferReliabilityIndexSensitivity()
    print(
        "hasoferReliabilityIndexSensitivity = ",
        repr(hasoferReliabilityIndexSensitivity),
    )

    # Event Probability Sensitivity
    eventProbabilitySensitivity = result.getEventProbabilitySensitivity()
    print("eventProbabilitySensitivity = ", repr(eventProbabilitySensitivity))