File: t_FarlieGumbelMorgensternCopula_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (93 lines) | stat: -rwxr-xr-x 3,268 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#! /usr/bin/env python

import openturns as ot
import openturns.testing as ott

ot.TESTPREAMBLE()

# Instantiate one distribution object
dim = 2
copula = ot.FarlieGumbelMorgensternCopula(0.7)
copula.setName("a farlieGumbelMorgenstern copula")
print("Copula ", repr(copula))
print("Copula ", copula)
print("Mean ", copula.getMean())
print("Covariance ", copula.getCovariance())
# Is this copula an elliptical distribution?
print("Elliptical distribution= ", copula.isElliptical())

# Is this copula elliptical ?
print("Elliptical copula= ", copula.hasEllipticalCopula())

# Is this copula independent ?
print("Independent copula= ", copula.hasIndependentCopula())

# Test for realization of copula
oneRealization = copula.getRealization()
print("oneRealization=", oneRealization)

# Define a point
point = ot.Point(dim, 0.2)

# Show PDF and CDF of zero point
zeroPDF = copula.computePDF(point)
zeroCDF = copula.computeCDF(point)
print("point= ", point, " pdf=", zeroPDF, " cdf= %.12g" % zeroCDF)

# Get 50% quantile
quantile = copula.computeQuantile(0.5)
print("Quantile=", quantile)
print("CDF(quantile)= %.12g" % copula.computeCDF(quantile))
# Get 95% survival function
inverseSurvival = ot.Point(copula.computeInverseSurvivalFunction(0.95))
print("InverseSurvival=", repr(inverseSurvival))
print(
    "Survival(inverseSurvival)=%.6f" % copula.computeSurvivalFunction(inverseSurvival)
)
print("entropy=%.6f" % copula.computeEntropy())

# Confidence regions
interval, threshold = copula.computeMinimumVolumeIntervalWithMarginalProbability(0.95)
print("Minimum volume interval=", interval)
print("threshold=", ot.Point(1, threshold))
levelSet, beta = copula.computeMinimumVolumeLevelSetWithThreshold(0.95)
print("Minimum volume level set=", levelSet)
print("beta=", ot.Point(1, beta))
interval, beta = copula.computeBilateralConfidenceIntervalWithMarginalProbability(0.95)
print("Bilateral confidence interval=", interval)
print("beta=", ot.Point(1, beta))
interval, beta = copula.computeUnilateralConfidenceIntervalWithMarginalProbability(
    0.95, False
)
print("Unilateral confidence interval (lower tail)=", interval)
print("beta=", ot.Point(1, beta))
interval, beta = copula.computeUnilateralConfidenceIntervalWithMarginalProbability(
    0.95, True
)
print("Unilateral confidence interval (upper tail)=", interval)
print("beta=", ot.Point(1, beta))

# Extract the marginals
for i in range(dim):
    margin = copula.getMarginal(i)
    print("margin=", margin)
    print("margin PDF=", margin.computePDF(ot.Point(1, 0.25)))
    print("margin CDF=", margin.computeCDF(ot.Point(1, 0.25)))
    print("margin quantile=", margin.computeQuantile(0.95))
    print("margin realization=", margin.getRealization())

# Extract a 2-D marginal
indices = [1, 0]
print("indices=", indices)
margins = copula.getMarginal(indices)
print("margins=", margins)
print("margins PDF=", margins.computePDF(ot.Point(2, 0.25)))
print("margins CDF= %.12g" % margins.computeCDF(ot.Point(2, 0.25)))
quantile = margins.computeQuantile(0.95)
print("margins quantile=", quantile)
print("margins CDF(quantile)= %.12g" % margins.computeCDF(quantile))
print("margins realization=", margins.getRealization())

ot.Log.Show(ot.Log.TRACE)
validation = ott.DistributionValidation(copula)
validation.run()