1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
|
#! /usr/bin/env python
import openturns as ot
ot.TESTPREAMBLE()
# Product
# First, build a function from R^3->R
inVar = ["x0", "x1", "x2"]
formula = ["x0^2 + 2 * x1 * x2 + 3 * x2"]
f1 = ot.SymbolicFunction(inVar, formula)
# Second, build a function from R^3->R^2
formula = ["x2 - x0 + x1"]
formula.append("x0 + x1 * x0 + x2")
f2 = ot.SymbolicFunction(inVar, formula)
# Third, build the product function
myFunction = f1 * f2
inPoint = ot.Point([1.2, 2.3, 3.4])
print("myFunction=", myFunction)
value = myFunction(inPoint)
print("Value at %s =\n%s" % (inPoint, value))
gradient = myFunction.gradient(inPoint)
print("Gradient at %s =\n%s" % (inPoint, gradient))
hessian = myFunction.hessian(inPoint)
print("Hessian at %s =\n%s" % (inPoint, hessian))
# Sum/difference
# First, build two functions from R^3->R^2
inVar = ["x0", "x1", "x2"]
formula = ["x0 + 2 * x1 * x2 + 3 * x2", "x2 - x0 + x1 * x0"]
f1 = ot.SymbolicFunction(inVar, formula)
formula = ["x0 + x1 + x2", "-2 * x0 + 3 * x2 * x1 - x1"]
f2 = ot.SymbolicFunction(inVar, formula)
# Second, build the function
mySum = f1 + f2
print("mySum=", mySum)
value = mySum(inPoint)
print(f"Value at {inPoint} =\n{value}")
gradient = mySum.gradient(inPoint)
print(f"Gradient at {inPoint} =\n{gradient}")
hessian = mySum.hessian(inPoint)
print(f"Hessian at {inPoint} =\n{hessian}")
myDiff = f1 - f2
print("myDiff=", myDiff)
value = myDiff(inPoint)
print(f"Value at {inPoint} =\n{value}")
gradient = myDiff.gradient(inPoint)
print(f"Gradient at {inPoint} =\n{gradient}")
hessian = myDiff.hessian(inPoint)
print(f"Hessian at {inPoint} =\n{hessian}")
|