1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
#! /usr/bin/env python
import openturns as ot
from openturns.usecases import ishigami_function
from openturns.testing import assert_almost_equal
import openturns.experimental as otexp
def computeMSENaiveLOO(
inputSample,
outputSample,
inputDistribution,
adaptiveStrategy,
projectionStrategy,
):
"""
Compute mean squared error by (naive) LOO.
Parameters
----------
inputSample : Sample(size, input_dimension)
The inputSample dataset.
outputSample : Sample(size, output_dimension)
The outputSample dataset.
inputDistribution : ot.Distribution.
The distribution of the input variable.
adaptiveStrategy : ot.AdaptiveStrategy
The method to select relevant coefficients.
projectionStrategy : ot.ProjectionStrategy
The method to compute the coefficients.
Returns
-------
mse : Point(output_dimension)
The mean squared error.
"""
#
sampleSize = inputSample.getSize()
outputDimension = outputSample.getDimension()
splitter = ot.LeaveOneOutSplitter(sampleSize)
residualsLOO = ot.Sample(sampleSize, outputDimension)
indexLOO = 0
for indicesTrain, indicesTest in splitter:
inputSampleTrain, inputSampleTest = (
inputSample[indicesTrain],
inputSample[indicesTest],
)
outputSampleTrain, outputSampleTest = (
outputSample[indicesTrain],
outputSample[indicesTest],
)
algoLOO = ot.FunctionalChaosAlgorithm(
inputSampleTrain,
outputSampleTrain,
inputDistribution,
adaptiveStrategy,
projectionStrategy,
)
algoLOO.run()
chaosResultLOO = algoLOO.getResult()
metamodelLOO = chaosResultLOO.getMetaModel()
outputPrediction = metamodelLOO(inputSampleTest)
for j in range(outputDimension):
residualsLOO[indexLOO, j] = outputSampleTest[0, j] - outputPrediction[0, j]
indexLOO += 1
mse = ot.Point(outputDimension)
for j in range(outputDimension):
marginalResidualsLOO = residualsLOO.getMarginal(j).asPoint()
mse[j] = marginalResidualsLOO.normSquare() / sampleSize
return mse
def computeMSENaiveKFold(
inputSample,
outputSample,
inputDistribution,
adaptiveStrategy,
projectionStrategy,
kParameter=5,
):
"""
Compute mean squared error by (naive) KFold.
Parameters
----------
inputSample : Sample(size, input_dimension)
The inputSample dataset.
outputSample : Sample(size, output_dimension)
The outputSample dataset.
inputDistribution : ot.Distribution.
The distribution of the input variable.
adaptiveStrategy : ot.AdaptiveStrategy
The method to select relevant coefficients.
projectionStrategy : ot.ProjectionStrategy
The method to compute the coefficients.
kParameter : int, in (2, sampleSize)
The parameter K.
Returns
-------
mse : Point(output_dimension)
The mean squared error.
"""
#
sampleSize = inputSample.getSize()
outputDimension = outputSample.getDimension()
splitter = ot.KFoldSplitter(sampleSize, kParameter)
squaredResiduals = ot.Sample(sampleSize, outputDimension)
for indicesTrain, indicesTest in splitter:
inputSampleTrain, inputSampleTest = (
inputSample[indicesTrain],
inputSample[indicesTest],
)
outputSampleTrain, outputSampleTest = (
outputSample[indicesTrain],
outputSample[indicesTest],
)
algoKFold = ot.FunctionalChaosAlgorithm(
inputSampleTrain,
outputSampleTrain,
inputDistribution,
adaptiveStrategy,
projectionStrategy,
)
algoKFold.run()
chaosResultKFold = algoKFold.getResult()
metamodelKFold = chaosResultKFold.getMetaModel()
predictionsKFold = metamodelKFold(inputSampleTest)
residualsKFold = outputSampleTest - predictionsKFold
foldSize = indicesTest.getSize()
for j in range(outputDimension):
for i in range(foldSize):
squaredResiduals[indicesTest[i], j] = residualsKFold[i, j] ** 2
mse = squaredResiduals.computeMean()
return mse
ot.TESTPREAMBLE()
# Problem parameters
im = ishigami_function.IshigamiModel()
dimension = im.inputDistribution.getDimension()
# Compute the sample size from number of folds to guarantee a non constant integer
# number of points per fold
kFoldParameter = 10
foldSampleSize = 20
sampleSize = foldSampleSize * kFoldParameter + 1
degree = 5
enumerateFunction = ot.LinearEnumerateFunction(dimension)
basisSize = enumerateFunction.getBasisSizeFromTotalDegree(degree)
print("basisSize = ", basisSize)
productBasis = ot.OrthogonalProductPolynomialFactory(
[ot.LegendreFactory()] * dimension, enumerateFunction
)
adaptiveStrategy = ot.FixedStrategy(productBasis, basisSize)
selectionAlgorithm = (
ot.PenalizedLeastSquaresAlgorithmFactory()
) # Get a full PCE: do not use model selection.
projectionStrategy = ot.LeastSquaresStrategy(selectionAlgorithm)
inputSample = im.inputDistribution.getSample(sampleSize)
outputSample = im.model(inputSample)
algo = ot.FunctionalChaosAlgorithm(
inputSample,
outputSample,
im.inputDistribution,
adaptiveStrategy,
projectionStrategy,
)
algo.run()
chaosResult = algo.getResult()
#
print("1. Analytical leave-one-out")
splitterLOO = ot.LeaveOneOutSplitter(sampleSize)
validationLOO = otexp.FunctionalChaosValidation(chaosResult, splitterLOO)
mseLOOAnalytical = validationLOO.computeMeanSquaredError()
print("Analytical LOO MSE = ", mseLOOAnalytical)
assert validationLOO.getSplitter().getN() == sampleSize
# Naive leave-one-out
mseLOOnaive = computeMSENaiveLOO(
inputSample,
outputSample,
im.inputDistribution,
adaptiveStrategy,
projectionStrategy,
)
print("Naive LOO MSE = ", mseLOOnaive)
# Test
rtolLOO = 1.0e-8
atolLOO = 0.0
assert_almost_equal(mseLOOAnalytical, mseLOOnaive, rtolLOO, atolLOO)
# Check LOO R2
r2ScoreLOO = validationLOO.computeR2Score()
print("Analytical LOO R2 score = ", r2ScoreLOO)
sampleVariance = outputSample.computeCentralMoment(2)
print("sampleVariance = ", sampleVariance)
r2ScoreReference = 1.0 - mseLOOAnalytical[0] / sampleVariance[0]
print("Computed R2 score = ", r2ScoreReference)
rtolLOO = 1.0e-12
atolLOO = 0.0
assert_almost_equal(r2ScoreReference, r2ScoreLOO[0], rtolLOO, atolLOO)
#
print("2. Analytical K-Fold")
splitterKF = ot.KFoldSplitter(sampleSize, kFoldParameter)
validationKFold = otexp.FunctionalChaosValidation(chaosResult, splitterKF)
print("KFold with K = ", kFoldParameter)
assert validationKFold.getSplitter().getN() == sampleSize
# Compute mean squared error
mseKFoldAnalytical = validationKFold.computeMeanSquaredError()
print("Analytical KFold MSE = ", mseKFoldAnalytical)
# Naive KFold
mseKFoldnaive = computeMSENaiveKFold(
inputSample,
outputSample,
im.inputDistribution,
adaptiveStrategy,
projectionStrategy,
kFoldParameter,
)
print("Naive KFold MSE = ", mseKFoldnaive)
# Test
rtolKFold = 1.0e-5
atolKFold = 0.0
assert_almost_equal(mseKFoldAnalytical, mseKFoldnaive, rtolKFold, atolKFold)
# Check K-Fold R2
r2ScoreKFold = validationKFold.computeR2Score()
print("Analytical K-Fold R2 score = ", r2ScoreKFold)
r2ScoreReference = 1.0 - mseKFoldAnalytical[0] / sampleVariance[0]
print("Computed R2 score = ", r2ScoreReference)
rtolKFold = 1.0e-12
atolKFold = 0.0
assert_almost_equal(r2ScoreReference, r2ScoreKFold[0], rtolKFold, atolKFold)
#
print("3. Setting FunctionalChaosValidation-ModelSelection to true")
# enables to do LOO CV on a sparse model.
ot.ResourceMap.SetAsBool("FunctionalChaosValidation-ModelSelection", True)
selectionAlgorithm = (
ot.LeastSquaresMetaModelSelectionFactory()
) # Get a sparse PCE (i.e. with model selection).
projectionStrategy = ot.LeastSquaresStrategy(selectionAlgorithm)
inputSample = im.inputDistribution.getSample(sampleSize)
outputSample = im.model(inputSample)
algo = ot.FunctionalChaosAlgorithm(
inputSample,
outputSample,
im.inputDistribution,
adaptiveStrategy,
projectionStrategy,
)
algo.run()
chaosResult = algo.getResult()
# Analytical leave-one-out
splitterLOO = ot.LeaveOneOutSplitter(sampleSize)
validationLOO = otexp.FunctionalChaosValidation(chaosResult, splitterLOO)
mseLOOAnalytical = validationLOO.computeMeanSquaredError()
print("Analytical LOO MSE = ", mseLOOAnalytical)
# Naive leave-one-out
mseLOOnaive = computeMSENaiveLOO(
inputSample,
outputSample,
im.inputDistribution,
adaptiveStrategy,
projectionStrategy,
)
print("Naive LOO MSE = ", mseLOOnaive)
# Test
rtolLOO = 1.0e-1 # We cannot have more accuracy, as the MSE estimator is then biased
atolLOO = 0.0
assert_almost_equal(mseLOOAnalytical, mseLOOnaive, rtolLOO, atolLOO)
|