File: t_FunctionalChaosValidation_std.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (282 lines) | stat: -rw-r--r-- 8,943 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#! /usr/bin/env python

import openturns as ot
from openturns.usecases import ishigami_function
from openturns.testing import assert_almost_equal
import openturns.experimental as otexp


def computeMSENaiveLOO(
    inputSample,
    outputSample,
    inputDistribution,
    adaptiveStrategy,
    projectionStrategy,
):
    """
    Compute mean squared error by (naive) LOO.

    Parameters
    ----------
    inputSample : Sample(size, input_dimension)
        The inputSample dataset.
    outputSample : Sample(size, output_dimension)
        The outputSample dataset.
    inputDistribution : ot.Distribution.
        The distribution of the input variable.
    adaptiveStrategy : ot.AdaptiveStrategy
        The method to select relevant coefficients.
    projectionStrategy : ot.ProjectionStrategy
        The method to compute the coefficients.

    Returns
    -------
    mse : Point(output_dimension)
        The mean squared error.
    """
    #
    sampleSize = inputSample.getSize()
    outputDimension = outputSample.getDimension()
    splitter = ot.LeaveOneOutSplitter(sampleSize)
    residualsLOO = ot.Sample(sampleSize, outputDimension)
    indexLOO = 0
    for indicesTrain, indicesTest in splitter:
        inputSampleTrain, inputSampleTest = (
            inputSample[indicesTrain],
            inputSample[indicesTest],
        )
        outputSampleTrain, outputSampleTest = (
            outputSample[indicesTrain],
            outputSample[indicesTest],
        )
        algoLOO = ot.FunctionalChaosAlgorithm(
            inputSampleTrain,
            outputSampleTrain,
            inputDistribution,
            adaptiveStrategy,
            projectionStrategy,
        )
        algoLOO.run()
        chaosResultLOO = algoLOO.getResult()
        metamodelLOO = chaosResultLOO.getMetaModel()
        outputPrediction = metamodelLOO(inputSampleTest)
        for j in range(outputDimension):
            residualsLOO[indexLOO, j] = outputSampleTest[0, j] - outputPrediction[0, j]
        indexLOO += 1
    mse = ot.Point(outputDimension)
    for j in range(outputDimension):
        marginalResidualsLOO = residualsLOO.getMarginal(j).asPoint()
        mse[j] = marginalResidualsLOO.normSquare() / sampleSize
    return mse


def computeMSENaiveKFold(
    inputSample,
    outputSample,
    inputDistribution,
    adaptiveStrategy,
    projectionStrategy,
    kParameter=5,
):
    """
    Compute mean squared error by (naive) KFold.

    Parameters
    ----------
    inputSample : Sample(size, input_dimension)
        The inputSample dataset.
    outputSample : Sample(size, output_dimension)
        The outputSample dataset.
    inputDistribution : ot.Distribution.
        The distribution of the input variable.
    adaptiveStrategy : ot.AdaptiveStrategy
        The method to select relevant coefficients.
    projectionStrategy : ot.ProjectionStrategy
        The method to compute the coefficients.
    kParameter : int, in (2, sampleSize)
        The parameter K.

    Returns
    -------
    mse : Point(output_dimension)
        The mean squared error.
    """
    #
    sampleSize = inputSample.getSize()
    outputDimension = outputSample.getDimension()
    splitter = ot.KFoldSplitter(sampleSize, kParameter)
    squaredResiduals = ot.Sample(sampleSize, outputDimension)
    for indicesTrain, indicesTest in splitter:
        inputSampleTrain, inputSampleTest = (
            inputSample[indicesTrain],
            inputSample[indicesTest],
        )
        outputSampleTrain, outputSampleTest = (
            outputSample[indicesTrain],
            outputSample[indicesTest],
        )
        algoKFold = ot.FunctionalChaosAlgorithm(
            inputSampleTrain,
            outputSampleTrain,
            inputDistribution,
            adaptiveStrategy,
            projectionStrategy,
        )
        algoKFold.run()
        chaosResultKFold = algoKFold.getResult()
        metamodelKFold = chaosResultKFold.getMetaModel()
        predictionsKFold = metamodelKFold(inputSampleTest)
        residualsKFold = outputSampleTest - predictionsKFold
        foldSize = indicesTest.getSize()
        for j in range(outputDimension):
            for i in range(foldSize):
                squaredResiduals[indicesTest[i], j] = residualsKFold[i, j] ** 2
    mse = squaredResiduals.computeMean()
    return mse


ot.TESTPREAMBLE()

# Problem parameters
im = ishigami_function.IshigamiModel()

dimension = im.inputDistribution.getDimension()

# Compute the sample size from number of folds to guarantee a non constant integer
# number of points per fold
kFoldParameter = 10
foldSampleSize = 20
sampleSize = foldSampleSize * kFoldParameter + 1

degree = 5
enumerateFunction = ot.LinearEnumerateFunction(dimension)
basisSize = enumerateFunction.getBasisSizeFromTotalDegree(degree)
print("basisSize = ", basisSize)
productBasis = ot.OrthogonalProductPolynomialFactory(
    [ot.LegendreFactory()] * dimension, enumerateFunction
)
adaptiveStrategy = ot.FixedStrategy(productBasis, basisSize)
selectionAlgorithm = (
    ot.PenalizedLeastSquaresAlgorithmFactory()
)  # Get a full PCE: do not use model selection.
projectionStrategy = ot.LeastSquaresStrategy(selectionAlgorithm)
inputSample = im.inputDistribution.getSample(sampleSize)
outputSample = im.model(inputSample)
algo = ot.FunctionalChaosAlgorithm(
    inputSample,
    outputSample,
    im.inputDistribution,
    adaptiveStrategy,
    projectionStrategy,
)
algo.run()
chaosResult = algo.getResult()

#
print("1. Analytical leave-one-out")
splitterLOO = ot.LeaveOneOutSplitter(sampleSize)
validationLOO = otexp.FunctionalChaosValidation(chaosResult, splitterLOO)
mseLOOAnalytical = validationLOO.computeMeanSquaredError()
print("Analytical LOO MSE = ", mseLOOAnalytical)
assert validationLOO.getSplitter().getN() == sampleSize

# Naive leave-one-out
mseLOOnaive = computeMSENaiveLOO(
    inputSample,
    outputSample,
    im.inputDistribution,
    adaptiveStrategy,
    projectionStrategy,
)
print("Naive LOO MSE = ", mseLOOnaive)

# Test
rtolLOO = 1.0e-8
atolLOO = 0.0
assert_almost_equal(mseLOOAnalytical, mseLOOnaive, rtolLOO, atolLOO)

# Check LOO R2
r2ScoreLOO = validationLOO.computeR2Score()
print("Analytical LOO R2 score = ", r2ScoreLOO)
sampleVariance = outputSample.computeCentralMoment(2)
print("sampleVariance = ", sampleVariance)
r2ScoreReference = 1.0 - mseLOOAnalytical[0] / sampleVariance[0]
print("Computed R2 score = ", r2ScoreReference)
rtolLOO = 1.0e-12
atolLOO = 0.0
assert_almost_equal(r2ScoreReference, r2ScoreLOO[0], rtolLOO, atolLOO)

#
print("2. Analytical K-Fold")
splitterKF = ot.KFoldSplitter(sampleSize, kFoldParameter)
validationKFold = otexp.FunctionalChaosValidation(chaosResult, splitterKF)
print("KFold with K = ", kFoldParameter)
assert validationKFold.getSplitter().getN() == sampleSize

# Compute mean squared error
mseKFoldAnalytical = validationKFold.computeMeanSquaredError()
print("Analytical KFold MSE = ", mseKFoldAnalytical)

# Naive KFold
mseKFoldnaive = computeMSENaiveKFold(
    inputSample,
    outputSample,
    im.inputDistribution,
    adaptiveStrategy,
    projectionStrategy,
    kFoldParameter,
)
print("Naive KFold MSE = ", mseKFoldnaive)

# Test
rtolKFold = 1.0e-5
atolKFold = 0.0
assert_almost_equal(mseKFoldAnalytical, mseKFoldnaive, rtolKFold, atolKFold)

# Check K-Fold R2
r2ScoreKFold = validationKFold.computeR2Score()
print("Analytical K-Fold R2 score = ", r2ScoreKFold)
r2ScoreReference = 1.0 - mseKFoldAnalytical[0] / sampleVariance[0]
print("Computed R2 score = ", r2ScoreReference)
rtolKFold = 1.0e-12
atolKFold = 0.0
assert_almost_equal(r2ScoreReference, r2ScoreKFold[0], rtolKFold, atolKFold)

#
print("3. Setting FunctionalChaosValidation-ModelSelection to true")
# enables to do LOO CV on a sparse model.
ot.ResourceMap.SetAsBool("FunctionalChaosValidation-ModelSelection", True)
selectionAlgorithm = (
    ot.LeastSquaresMetaModelSelectionFactory()
)  # Get a sparse PCE (i.e. with model selection).
projectionStrategy = ot.LeastSquaresStrategy(selectionAlgorithm)
inputSample = im.inputDistribution.getSample(sampleSize)
outputSample = im.model(inputSample)
algo = ot.FunctionalChaosAlgorithm(
    inputSample,
    outputSample,
    im.inputDistribution,
    adaptiveStrategy,
    projectionStrategy,
)
algo.run()
chaosResult = algo.getResult()

# Analytical leave-one-out
splitterLOO = ot.LeaveOneOutSplitter(sampleSize)
validationLOO = otexp.FunctionalChaosValidation(chaosResult, splitterLOO)
mseLOOAnalytical = validationLOO.computeMeanSquaredError()
print("Analytical LOO MSE = ", mseLOOAnalytical)
# Naive leave-one-out
mseLOOnaive = computeMSENaiveLOO(
    inputSample,
    outputSample,
    im.inputDistribution,
    adaptiveStrategy,
    projectionStrategy,
)
print("Naive LOO MSE = ", mseLOOnaive)
# Test
rtolLOO = 1.0e-1  # We cannot have more accuracy, as the MSE estimator is then biased
atolLOO = 0.0
assert_almost_equal(mseLOOAnalytical, mseLOOnaive, rtolLOO, atolLOO)