File: t_FunctionalChaos_gsobol.py

package info (click to toggle)
openturns 1.24-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,204 kB
  • sloc: cpp: 256,662; python: 63,381; ansic: 4,414; javascript: 406; sh: 180; xml: 164; yacc: 123; makefile: 98; lex: 55
file content (146 lines) | stat: -rwxr-xr-x 4,983 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()


def sobol(indice, ai):
    val = 1.0
    for i in range(indice.getSize()):
        val = val * 1.0 / (3.0 * (1.0 + ai[indice[i]]) ** 2.0)
    return val


# Problem parameters
dimension = 3

# Create the Sobol function
# Reference analytical values
meanTh = 1.0
a = ot.Point(dimension)
inputVariables = ot.Description(dimension)
formula = ot.Description(1)
formula[0] = "1.0"
covTh = 1.0
for i in range(dimension):
    a[i] = 0.5 * i
    covTh = covTh * (1.0 + 1.0 / (3.0 * (1.0 + a[i]) ** 2))
    inputVariables[i] = "xi" + str(i)
    formula[0] = (
        formula[0]
        + " * ((abs(4.0 * xi"
        + str(i)
        + " - 2.0) + "
        + str(a[i])
        + ") / (1.0 + "
        + str(a[i])
        + "))"
    )
covTh = covTh - 1.0
model = ot.SymbolicFunction(inputVariables, formula)

# Create the input distribution
marginals = [ot.Uniform(0.0, 1.0)] * dimension
distribution = ot.JointDistribution(marginals)

# Create the orthogonal basis
enumerateFunction = ot.LinearEnumerateFunction(dimension)
productBasis = ot.OrthogonalProductPolynomialFactory(marginals)

# Create the adaptive strategy
# We can choose amongst several strategies
# First, the most efficient (but more complex!) strategy
listAdaptiveStrategy = list()
degree = 4
indexMax = enumerateFunction.getStrataCumulatedCardinal(degree)
basisDimension = enumerateFunction.getStrataCumulatedCardinal(degree // 2)
threshold = 1.0e-6
listAdaptiveStrategy.append(
    ot.CleaningStrategy(productBasis, indexMax, basisDimension, threshold)
)
# Second, the most used (and most basic!) strategy
listAdaptiveStrategy.append(
    ot.FixedStrategy(
        productBasis, enumerateFunction.getBasisSizeFromTotalDegree(degree)
    )
)

for adaptiveStrategyIndex in range(len(listAdaptiveStrategy)):
    adaptiveStrategy = listAdaptiveStrategy[adaptiveStrategyIndex]
    # Create the projection strategy
    samplingSize = 250
    listExperiment = list()
    # Monte Carlo sampling
    listExperiment.append(ot.MonteCarloExperiment(distribution, samplingSize))
    # LHS sampling
    listExperiment.append(ot.LHSExperiment(distribution, samplingSize))
    # Low Discrepancy sequence
    listExperiment.append(
        ot.LowDiscrepancyExperiment(ot.SobolSequence(), distribution, samplingSize)
    )
    for experiment in listExperiment:
        # Create the polynomial chaos algorithm
        maximumResidual = 1.0e-10
        ot.RandomGenerator.SetSeed(0)
        X = experiment.generate()
        Y = model(X)
        algo = ot.FunctionalChaosAlgorithm(X, Y, distribution, adaptiveStrategy)
        algo.setMaximumResidual(maximumResidual)
        algo.run()

        # Examine the results
        result = algo.getResult()
        print("###################################")
        print(algo.getAdaptiveStrategy())
        print(algo.getProjectionStrategy())
        # print "coefficients=", result.getCoefficients()
        residuals = result.getResiduals()
        print("residuals=", residuals)
        relativeErrors = result.getRelativeErrors()
        print("relative errors=", relativeErrors)
        print("isLeastSquares= ", result.isLeastSquares())
        assert result.isLeastSquares()
        print("involvesModelSelection= ", result.involvesModelSelection())
        modelSelectionReference = adaptiveStrategy.getClassName() == "CleaningStrategy"
        assert result.involvesModelSelection() == modelSelectionReference

        # Post-process the results
        vector = ot.FunctionalChaosRandomVector(result)
        mean = vector.getMean()[0]
        print("mean=%.8f" % mean, "absolute error=%.8f" % abs(mean - meanTh))
        variance = vector.getCovariance()[0, 0]
        sensitivity = ot.FunctionalChaosSobolIndices(result)
        print("variance=%.8f" % variance, "absolute error=%.8f" % abs(variance - covTh))
        indices = ot.Indices(1)
        for i in range(dimension):
            indices[0] = i
            value = sensitivity.getSobolIndex(i)
            print(
                "Sobol index",
                i,
                "= %.8f" % value,
                "absolute error=%.8f" % abs(value - sobol(indices, a) / covTh),
            )
        indices = ot.Indices(2)
        k = 0
        for i in range(dimension):
            indices[0] = i
            for j in range(i + 1, dimension):
                indices[1] = j
                value = sensitivity.getSobolIndex(indices)
                print(
                    "Sobol index",
                    indices,
                    "=%.8f" % value,
                    "absolute error=%.8f" % abs(value - sobol(indices, a) / covTh),
                )
                k = k + 1
        indices = ot.Indices([0, 1, 2])
        value = sensitivity.getSobolIndex(indices)
        print(
            "Sobol index",
            indices,
            "=%.8f" % value,
            "absolute error=%.8f" % abs(value - sobol(indices, a) / covTh),
        )