1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
#! /usr/bin/env python
import openturns as ot
from openturns.usecases import ishigami_function
ot.TESTPREAMBLE()
# Problem parameters
im = ishigami_function.IshigamiModel()
distribution = im.inputDistribution
model = im.model
dimension = im.inputDistribution.getDimension()
sobolFirstOrderReference = [im.S1, im.S2, im.S3]
sobolSecondOrderReference = [im.S12, im.S13, im.S23]
sobolTotalReference = [im.ST1, im.ST2, im.ST3]
sobolInteractionTotalReference2 = [im.S12 + im.S123, im.S13 + im.S123, im.S23 + im.S123]
sobolInteractionTotalReference3 = [im.S123]
sobolGroupedIndex2 = [
im.S1 + im.S2 + im.S12,
im.S1 + im.S3 + im.S13,
im.S2 + im.S3 + im.S23,
]
sobolGroupedIndex3 = [im.S1 + im.S2 + im.S3 + im.S12 + im.S13 + im.S23 + im.S123]
# Create the orthogonal basis
enumerateFunction = ot.LinearEnumerateFunction(dimension)
productBasis = ot.OrthogonalProductPolynomialFactory(
[ot.LegendreFactory()] * dimension, enumerateFunction
)
# Create the adaptive strategy
# We can choose amongst several strategies
# First, the most efficient (but more complex!) strategy
listAdaptiveStrategy = list()
degree = 6
indexMax = enumerateFunction.getBasisSizeFromTotalDegree(degree)
basisDimension = enumerateFunction.getBasisSizeFromTotalDegree(degree // 2)
threshold = 1.0e-6
listAdaptiveStrategy.append(
ot.CleaningStrategy(productBasis, indexMax, basisDimension, threshold)
)
# Second, the most used (and most basic!) strategy
listAdaptiveStrategy.append(
ot.FixedStrategy(
productBasis, enumerateFunction.getBasisSizeFromTotalDegree(degree)
)
)
for adaptiveStrategyIndex in range(len(listAdaptiveStrategy)):
adaptiveStrategy = listAdaptiveStrategy[adaptiveStrategyIndex]
# Create the projection strategy
samplingSize = 250
listExperiment = list()
# We have only the LeastSquaresStrategy up to now (0.13.0) but we can choose several sampling schemes
# Monte Carlo sampling
listExperiment.append(ot.MonteCarloExperiment(distribution, samplingSize))
# LHS sampling
listExperiment.append(ot.LHSExperiment(distribution, samplingSize))
# Low Discrepancy sequence
listExperiment.append(
ot.LowDiscrepancyExperiment(ot.SobolSequence(), distribution, samplingSize)
)
for experiment in listExperiment:
# Create the polynomial chaos algorithm
maximumResidual = 1.0e-10
ot.RandomGenerator.SetSeed(0)
X = experiment.generate()
Y = model(X)
algo = ot.FunctionalChaosAlgorithm(X, Y, distribution, adaptiveStrategy)
algo.setMaximumResidual(maximumResidual)
algo.run()
# Examine the results
result = algo.getResult()
pGrad = result.getMetaModel().parameterGradient(distribution.getMean())
print("###################################")
print(algo.getAdaptiveStrategy())
print(algo.getProjectionStrategy())
# print "coefficients=", result.getCoefficients()
residuals = result.getResiduals()
print("residuals=", residuals)
relativeErrors = result.getRelativeErrors()
print("relativeErrors=", relativeErrors)
isLeastSquaresPCE = result.isLeastSquares()
assert isLeastSquaresPCE
involvesModelSelectionPCE = result.involvesModelSelection()
involvesModelSelection = adaptiveStrategy.involvesModelSelection()
assert involvesModelSelection == involvesModelSelectionPCE
# Post-process the results
vector = ot.FunctionalChaosRandomVector(result)
mean = vector.getMean()[0]
print("mean=%.8f" % mean, "absolute error=%.10f" % abs(mean - im.expectation))
variance = vector.getCovariance()[0, 0]
print(
"variance=%.8f" % variance,
"absolute error=%.10f" % abs(variance - im.variance),
)
sensitivity = ot.FunctionalChaosSobolIndices(result)
for i in range(dimension):
value = sensitivity.getSobolIndex(i)
print(
"Sobol index",
i,
"= %.8f" % value,
"absolute error=%.10f" % abs(value - sobolFirstOrderReference[i]),
)
indices = ot.Indices(2)
k = 0
for i in range(dimension):
indices[0] = i
for j in range(i + 1, dimension):
indices[1] = j
value = sensitivity.getSobolIndex(indices)
print(
"Sobol index",
indices,
"=%.8f" % value,
"absolute error=%.10f" % abs(value - sobolSecondOrderReference[k]),
)
k = k + 1
indices = ot.Indices([0, 1, 2])
value = sensitivity.getSobolIndex(indices)
print(
"Sobol index",
indices,
"=%.8f" % value,
"absolute error=%.10f" % abs(value - im.S123),
)
for i in range(dimension):
value = sensitivity.getSobolTotalIndex(i)
print(
"Sobol total index",
i,
"=%.8f" % value,
"absolute error=%.10f" % abs(value - sobolTotalReference[i]),
)
indices = ot.Indices(2)
k = 0
for i in range(dimension):
indices[0] = i
for j in range(i + 1, dimension):
indices[1] = j
value = sensitivity.getSobolTotalIndex(indices)
print(
"Sobol total index",
indices,
"=%.8f" % value,
"absolute error=%.10f"
% abs(value - sobolInteractionTotalReference2[k]),
)
k = k + 1
indices = ot.Indices([0, 1, 2])
value = sensitivity.getSobolTotalIndex(indices)
print(
"Sobol total index ",
indices,
"=%.8f" % value,
"absolute error=%.10f" % abs(value - sobolInteractionTotalReference3[0]),
)
indices = ot.Indices(2)
k = 0
for i in range(dimension):
indices[0] = i
for j in range(i + 1, dimension):
indices[1] = j
value = sensitivity.getSobolGroupedIndex(indices)
print(
"Sobol grouped index",
indices,
"=%.8f" % value,
"absolute error=%.10f" % abs(value - sobolGroupedIndex2[k]),
)
k = k + 1
indices = ot.Indices([0, 1, 2])
value = sensitivity.getSobolGroupedIndex(indices)
print(
"Sobol grouped index ",
indices,
"=%.8f" % value,
"absolute error=%.10f" % abs(value - sobolGroupedIndex3[0]),
)
indices = ot.Indices([0, 1, 2])
value = sensitivity.getSobolGroupedTotalIndex(indices)
print(
"Sobol grouped total index ",
indices,
"=%.8f" % value,
"absolute error=%.10f" % abs(value - 1.0),
)
# Get part of variance indices
print("Part of variance")
partOfVariance = sensitivity.getPartOfVariance()
result = sensitivity.getFunctionalChaosResult()
orthogonalBasis = result.getOrthogonalBasis()
enumerateFunction = orthogonalBasis.getEnumerateFunction()
indices = result.getIndices()
basisSize = indices.getSize()
for i in range(basisSize):
globalIndex = indices[i]
multiIndex = enumerateFunction(globalIndex)
if partOfVariance[i] > 1.0e-3:
print(
"%d, %d, %s, %.4f" % (i, globalIndex, multiIndex, partOfVariance[i])
)
# Print summary
print(sensitivity)
|