1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
#! /usr/bin/env python
import openturns as ot
import math as m
ot.TESTPREAMBLE()
# Problem parameters
dimension = 3
a = 7.0
b = 0.1
# Reference analytical values
meanTh = a / 2
covTh = (b**2 * m.pi**8) / 18.0 + (b * m.pi**4) / 5.0 + (a**2) / 8.0 + 1.0 / 2.0
sob_1 = [
(b * m.pi**4 / 5.0 + b**2 * m.pi**8 / 50.0 + 1.0 / 2.0) / covTh,
(a**2 / 8.0) / covTh,
0.0,
]
sob_2 = [0.0, (b**2 * m.pi**8 / 18.0 - b**2 * m.pi**8 / 50.0) / covTh, 0.0]
sob_3 = [0.0]
sob_T1 = [
sob_1[0] + sob_2[0] + sob_2[1] + sob_3[0],
sob_1[1] + sob_2[0] + sob_2[2] + sob_3[0],
sob_1[2] + sob_2[1] + sob_2[2] + sob_3[0],
]
sob_T2 = [
sob_2[0] + sob_2[1] + sob_3[0],
sob_2[0] + sob_2[2] + sob_3[0],
sob_2[1] + sob_2[2] + sob_3[0],
]
sob_T3 = [sob_3[0]]
# Create the Ishigami function
inputVariables = ["xi1", "xi2", "xi3"]
formula = ot.Description(1)
formula[0] = (
"sin(xi1) + (" + str(a) + ") * (sin(xi2)) ^ 2 + (" + str(b) + ") * xi3^4 * sin(xi1)"
)
model = ot.SymbolicFunction(inputVariables, formula)
# Create the input distribution
distribution = ot.JointDistribution([ot.Uniform(-m.pi, m.pi)] * dimension)
# Create the orthogonal basis
enumerateFunction = ot.LinearEnumerateFunction(dimension)
productBasis = ot.OrthogonalProductPolynomialFactory(
[ot.LegendreFactory()] * dimension, enumerateFunction
)
# Create the projection strategy
samplingSize = 250
listProjectionStrategy = list()
# Monte Carlo sampling
inputSample = ot.LowDiscrepancyExperiment(
ot.SobolSequence(), distribution, samplingSize
).generate()
outputSample = model(inputSample)
# From here, the model is no more needed
listProjectionStrategy.append(ot.LeastSquaresStrategy())
listProjectionStrategy.append(
ot.LeastSquaresStrategy(
ot.LeastSquaresMetaModelSelectionFactory(ot.LARS(), ot.CorrectedLeaveOneOut())
)
)
listProjectionStrategy.append(ot.IntegrationStrategy())
# Create the adaptive strategy
# We can choose amongst several strategies
# First, the most efficient (but more complex!) strategy
degree = 6
listAdaptiveStrategy = list()
indexMax = enumerateFunction.getBasisSizeFromTotalDegree(degree)
basisDimension = enumerateFunction.getBasisSizeFromTotalDegree(degree // 2)
threshold = 1.0e-6
listAdaptiveStrategy.append(
ot.CleaningStrategy(productBasis, indexMax, basisDimension, threshold)
)
# Second, the most used (and most basic!) strategy
listAdaptiveStrategy.append(
ot.FixedStrategy(
productBasis, enumerateFunction.getBasisSizeFromTotalDegree(degree)
)
)
# Check LeastSquaresStrategy
projectionStrategy = ot.LeastSquaresStrategy()
assert projectionStrategy.isLeastSquares()
assert not projectionStrategy.involvesModelSelection()
# Check LeastSquaresMetaModelSelectionFactory
projectionStrategy = ot.LeastSquaresStrategy(
ot.LeastSquaresMetaModelSelectionFactory(ot.LARS(), ot.CorrectedLeaveOneOut())
)
assert projectionStrategy.isLeastSquares()
assert projectionStrategy.involvesModelSelection()
# Check IntegrationStrategy
projectionStrategy = ot.IntegrationStrategy()
assert not projectionStrategy.isLeastSquares()
assert not projectionStrategy.involvesModelSelection()
# Check CleaningStrategy
adaptiveStrategy = ot.CleaningStrategy(
productBasis, indexMax, basisDimension, threshold
)
assert adaptiveStrategy.involvesModelSelection()
# Check FixedStrategy
adaptiveStrategy = ot.FixedStrategy(
productBasis, enumerateFunction.getBasisSizeFromTotalDegree(degree)
)
assert not adaptiveStrategy.involvesModelSelection()
for adaptiveStrategyIndex in range(len(listAdaptiveStrategy)):
adaptiveStrategy = listAdaptiveStrategy[adaptiveStrategyIndex]
for projectionStrategyIndex in range(len(listProjectionStrategy)):
projectionStrategy = listProjectionStrategy[projectionStrategyIndex]
# Create the polynomial chaos algorithm
maximumResidual = 1.0e-10
algo = ot.FunctionalChaosAlgorithm(
inputSample,
outputSample,
distribution,
adaptiveStrategy,
projectionStrategy,
)
algo.setMaximumResidual(maximumResidual)
ot.RandomGenerator.SetSeed(0)
algo.run()
# Examine the results
result = algo.getResult()
print("###################################")
print(adaptiveStrategy)
print(algo.getProjectionStrategy())
residuals = result.getResiduals()
print("residuals=", residuals)
relativeErrors = result.getRelativeErrors()
print("relativeErrors=", relativeErrors)
print("isLeastSquares= ", result.isLeastSquares())
isLeastSquaresReference = (
projectionStrategy.getClassName() == "LeastSquaresStrategy"
)
assert result.isLeastSquares() == isLeastSquaresReference
print("involvesModelSelection= ", result.involvesModelSelection())
modelSelectionReference = (
projectionStrategy.involvesModelSelection()
or adaptiveStrategy.involvesModelSelection()
)
assert result.involvesModelSelection() == modelSelectionReference
# Post-process the results
vector = ot.FunctionalChaosRandomVector(result)
mean = vector.getMean()[0]
print("mean=%.8f" % mean, "absolute error=%.10f" % abs(mean - meanTh))
variance = vector.getCovariance()[0, 0]
print(
"variance=%.8f" % variance, "absolute error=%.10f" % abs(variance - covTh)
)
sensitivity = ot.FunctionalChaosSobolIndices(result)
for i in range(dimension):
value = sensitivity.getSobolIndex(i)
print(
"Sobol index",
i,
"= %.8f" % value,
"absolute error=%.10f" % abs(value - sob_1[i]),
)
indices = ot.Indices(2)
k = 0
for i in range(dimension):
indices[0] = i
for j in range(i + 1, dimension):
indices[1] = j
value = sensitivity.getSobolIndex(indices)
print(
"Sobol index",
indices,
"=%.8f" % value,
"absolute error=%.10f" % abs(value - sob_2[k]),
)
k = k + 1
indices = ot.Indices([0, 1, 2])
value = sensitivity.getSobolIndex(indices)
print(
"Sobol index",
indices,
"=%.8f" % value,
"absolute error=%.10f" % abs(value - sob_3[0]),
)
for i in range(dimension):
value = sensitivity.getSobolTotalIndex(i)
print(
"Sobol total index",
i,
"=%.8f" % value,
"absolute error=%.10f" % abs(value - sob_T1[i]),
)
indices = ot.Indices(2)
k = 0
for i in range(dimension):
indices[0] = i
for j in range(i + 1, dimension):
indices[1] = j
value = sensitivity.getSobolIndex(indices)
print(
"Sobol total index",
indices,
"=%.8f" % value,
"absolute error=%.10f" % abs(value - sob_2[k]),
)
k = k + 1
indices = ot.Indices([0, 1, 2])
value = sensitivity.getSobolTotalIndex(indices)
print(
"Sobol total index ",
indices,
"=%.8f" % value,
"absolute error=%.10f" % abs(value - sob_3[0]),
)
|